These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22859028)

  • 1. Narrowband sodium lidar for the measurements of mesopause region temperature and wind.
    Li T; Fang X; Liu W; Gu SY; Dou X
    Appl Opt; 2012 Aug; 51(22):5401-11. PubMed ID: 22859028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesopause-region temperature and wind measurements with pseudorandom modulation continuous-wave (PMCW) lidar at 589 nm.
    She CY; Abo M; Yue J; Williams BP; Nagasawa C; Nakamura T
    Appl Opt; 2011 Jun; 50(18):2916-26. PubMed ID: 21691356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudo-random modulation continuous-wave lidar for the measurements of mesopause region sodium density.
    Li F; Li T; Fang X; Tian B; Dou X
    Opt Express; 2021 Jan; 29(2):1932-1944. PubMed ID: 33726397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrieving mesopause temperature and line-of-sight wind from full-diurnal-cycle Na lidar observations.
    Krueger DA; She CY; Yuan T
    Appl Opt; 2015 Nov; 54(32):9469-89. PubMed ID: 26560775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-state 589 nm seed laser based on Raman fiber amplifier for sodium wind/temperature lidar in Tibet, China.
    Yang Y; Yang Y; Xia Y; Lin X; Zhang L; Jiang H; Cheng X; Liu L; Ji K; Li F
    Opt Express; 2018 Jun; 26(13):16226-16235. PubMed ID: 30119457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region.
    Xia Y; Du L; Cheng X; Li F; Wang J; Wang Z; Yang Y; Lin X; Xun Y; Gong S; Yang G
    Opt Express; 2017 Mar; 25(5):5264-5278. PubMed ID: 28380790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis.
    Wang Z; Liu Z; Liu L; Wu S; Liu B; Li Z; Chu X
    Appl Opt; 2010 Dec; 49(36):6960-78. PubMed ID: 21173831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity analysis of Na narrowband wind-temperature lidar systems.
    Papen GC; Pfenninger WM; Simonich DM
    Appl Opt; 1995 Jan; 34(3):480-98. PubMed ID: 20963143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabry-Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 0.2 to 35  km altitude.
    Shen F; Xie C; Qiu C; Wang B
    Appl Opt; 2018 Nov; 57(31):9328-9340. PubMed ID: 30461973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lidar measurements taken with a large-aperture liquid mirror. 2. Sodium resonance-fluorescence system.
    Argall PS; Vassiliev ON; Sica RJ; Mwangi MM
    Appl Opt; 2000 May; 39(15):2393-400. PubMed ID: 18345149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption spectroscopy.
    Yuan T; Yue J; She CY; Sherman JP; White MA; Harrell SD; Acott PE; Krueger DA
    Appl Opt; 2009 Jul; 48(20):3988-93. PubMed ID: 19593351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements.
    Liu ZS; Bi DC; Song XQ; Xia JB; Li RZ; Wang ZJ; She CY
    Opt Lett; 2009 Sep; 34(18):2712-4. PubMed ID: 19756080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution lidar observations of mesospheric sodium and implications for adaptive optics.
    Pfrommer T; Hickson P
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A97-105. PubMed ID: 21045896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency receiver architecture for resonance-fluorescence and Doppler lidars.
    Smith JA; Chu X
    Appl Opt; 2015 Apr; 54(11):3173-84. PubMed ID: 25967301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver.
    Chen H; White MA; Krueger DA; She CY
    Opt Lett; 1996 Aug; 21(15):1093-5. PubMed ID: 19876263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.
    Xia H; Dou X; Shangguan M; Zhao R; Sun D; Wang C; Qiu J; Shu Z; Xue X; Han Y; Han Y
    Opt Express; 2014 Sep; 22(18):21775-89. PubMed ID: 25321553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere.
    Dou X; Han Y; Sun D; Xia H; Shu Z; Zhao R; Shangguan M; Guo J
    Opt Express; 2014 Aug; 22 Suppl 5():A1203-21. PubMed ID: 25322175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar.
    Rees D; McDermid IS
    Appl Opt; 1990 Oct; 29(28):4133-44. PubMed ID: 20577356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system.
    Sica RJ; Sargoytchev S; Argall PS; Borra EF; Girard L; Sparrow CT; Flatt S
    Appl Opt; 1995 Oct; 34(30):6925-36. PubMed ID: 21060554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique.
    Kawahara TD; Kitahara T; Kobayashi F; Saito Y; Nomura A
    Opt Express; 2011 Feb; 19(4):3553-61. PubMed ID: 21369179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.