These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 22859052)

  • 1. Long-haul dense wavelength division multiplexing between a chaotic optical secure channel and a conventional fiber-optic channel.
    Zhao Q; Yin H; Chen X
    Appl Opt; 2012 Aug; 51(22):5585-90. PubMed ID: 22859052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental demonstration of polarization-division multiplexing of chaotic laser secure communications.
    Dou X; Yin H; Yue H; Jin Y
    Appl Opt; 2015 May; 54(14):4509-13. PubMed ID: 25967509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelength division multiplexing of chaotic secure and fiber-optic communications.
    Zhang JZ; Wang AB; Wang JF; Wang YC
    Opt Express; 2009 Apr; 17(8):6357-67. PubMed ID: 19365461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion-optimized optical fiber for high-speed long-haul dense wavelength division multiplexing transmission.
    Wu J; Chen L; Li Q; Wu W; Sun K; Wu X
    Appl Opt; 2011 Jul; 50(20):3538-46. PubMed ID: 21743564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 100Gb/s coherent optical secure communication over 1000 km based on analog-digital hybrid chaos.
    Wu Y; Zhang Z; Luo H; Deng L; Yang Q; Dai X; Liu D; Gao X; Yu Y; Cheng M
    Opt Express; 2023 Sep; 31(20):33200-33211. PubMed ID: 37859105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time polarization mode dispersion monitoring system for a multiple-erbium-doped fiber amplifier, dense wavelength division multiplexing optical fiber transmission by amplified spontaneous emission modulation and acousto-optic tunable fiber scanning techniques.
    Tseng BJ; Tarn CW
    Appl Opt; 2009 Mar; 48(7):C92-7. PubMed ID: 19252622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers.
    Lin FY; Tsai MC
    Opt Express; 2007 Jan; 15(2):302-11. PubMed ID: 19532245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capacity expansion of chaotic secure transmission system based on coherent optical detection and space division multiplexing over multi-core fiber.
    Wu Y; Luo H; Cheng M; Huang C; Zhang Z; Deng L; Yang Q; Tang M; Dai X; Liu D
    Opt Lett; 2022 Feb; 47(3):726-729. PubMed ID: 35103718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear performance of multi-granularity orthogonal transmission systems with frequency division multiplexing.
    Zhang F; Yang C; Fang X; Zhang T; Chen Z
    Opt Express; 2013 Mar; 21(5):6115-30. PubMed ID: 23482180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical secure key distribution based on chaotic self-carrier phase modulation and time-delayed shift keying of synchronized optical chaos.
    Gao Z; Ma Z; Wu S; Gao H; Wang A; Fu S; Li Z; Qin Y; Wang Y
    Opt Express; 2022 Jun; 30(13):23953-23966. PubMed ID: 36225066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber.
    Zhu B; Taunay TF; Fishteyn M; Liu X; Chandrasekhar S; Yan MF; Fini JM; Monberg EM; Dimarcello FV
    Opt Express; 2011 Aug; 19(17):16665-71. PubMed ID: 21935028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed chaos-based secure optical communications over 130-km multi-core fiber.
    Wang Z; Shen L; Yang M; Tang Z; Zhang L; Yan C; Yang L; Wang R; Chu J; Du J; Wang J
    Opt Lett; 2023 Sep; 48(17):4440-4443. PubMed ID: 37656523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ideal optical backpropagation of scalar NLSE using dispersion-decreasing fibers for WDM transmission.
    Liang X; Kumar S; Shao J
    Opt Express; 2013 Nov; 21(23):28668-75. PubMed ID: 24514378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiconductor Optical Amplifier (SOA)-Driven Reservoir Computing for Dense Wavelength-Division Multiplexing (DWDM) Signal Compensation.
    Yang Y; Luo H; Zhang R; Yang F; Wu B; Qiu K; Wen F
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot-based cross-phase modulation compensation for coherent optical orthogonal frequency division multiplexing long-haul optical communications systems.
    Du LB; Lowery AJ
    Opt Lett; 2011 May; 36(9):1647-9. PubMed ID: 21540956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinearity compensation using dispersion-folded digital backward propagation.
    Zhu L; Li G
    Opt Express; 2012 Jun; 20(13):14362-70. PubMed ID: 22714497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-distance transmission of quantum key distribution coexisting with classical optical communication over a weakly-coupled few-mode fiber.
    Wang BX; Mao Y; Shen L; Zhang L; Lan XB; Ge D; Gao Y; Li J; Tang YL; Tang SB; Zhang J; Chen TY; Pan JW
    Opt Express; 2020 Apr; 28(9):12558-12565. PubMed ID: 32403751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-comb-referenced multi-channel fiber laser for DWDM communication.
    Chun BJ; Hyun S; Kim S; Kim SW; Kim YJ
    Opt Express; 2013 Dec; 21(24):29179-85. PubMed ID: 24514469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications.
    Kim HJ; Song JI
    Opt Express; 2012 Mar; 20(7):8047-54. PubMed ID: 22453476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems.
    Du LB; Lowery AJ
    Opt Express; 2010 Aug; 18(16):17075-88. PubMed ID: 20721096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.