These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 22859090)

  • 41. Optical coherence tomography axial resolution improvement by step-frequency encoding.
    Bousi E; Charalambous I; Pitris C
    Opt Express; 2010 May; 18(11):11877-90. PubMed ID: 20589049
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.
    Inoue R; Hangai M; Kotera Y; Nakanishi H; Mori S; Morishita S; Yoshimura N
    Ophthalmology; 2009 Feb; 116(2):214-22. PubMed ID: 19091413
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Zero-crossing approach to high-resolution reconstruction in frequency-domain optical-coherence tomography.
    Krishnan SR; Seelamantula CS; Bouwens A; Leutenegger M; Lasser T
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2080-91. PubMed ID: 23201655
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Artefact reduction for cell migration visualization using spectral domain optical coherence tomography.
    Hofer B; Povazay B; Hermann B; Rey SM; Kajić V; Tumlinson A; Powell K; Matz G; Drexler W
    J Biophotonics; 2011 May; 4(5):355-67. PubMed ID: 21520429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser.
    Klein T; Wieser W; Eigenwillig CM; Biedermann BR; Huber R
    Opt Express; 2011 Feb; 19(4):3044-62. PubMed ID: 21369128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of spectral-domain versus time-domain optical coherence tomography in management of age-related macular degeneration with ranibizumab.
    Sayanagi K; Sharma S; Yamamoto T; Kaiser PK
    Ophthalmology; 2009 May; 116(5):947-55. PubMed ID: 19232732
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems.
    Ratheesh KM; Seah LK; Murukeshan VM
    Phys Med Biol; 2016 Nov; 61(21):7652-7663. PubMed ID: 27740940
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sparse OCT: Optimizing compressed sensing in spectral domain optical coherence tomography.
    Liu X; Kang JU
    Proc SPIE Int Soc Opt Eng; 2011; 7904():. PubMed ID: 22611482
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectral domain optical coherence tomography: a better OCT imaging strategy.
    Yaqoob Z; Wu J; Yang C
    Biotechniques; 2005 Dec; 39(6 Suppl):S6-13. PubMed ID: 20158503
    [TBL] [Abstract][Full Text] [Related]  

  • 50. General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery.
    Wong A; Mishra A; Bizheva K; Clausi DA
    Opt Express; 2010 Apr; 18(8):8338-52. PubMed ID: 20588679
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real-time compressive sensing spectral domain optical coherence tomography.
    Xu D; Huang Y; Kang JU
    Opt Lett; 2014 Jan; 39(1):76-9. PubMed ID: 24365826
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electronically controlled coherent linear optical sampling for optical coherence tomography.
    Kray S; Spöler F; Hellerer T; Kurz H
    Opt Express; 2010 May; 18(10):9976-90. PubMed ID: 20588852
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device.
    Scott AW; Farsiu S; Enyedi LB; Wallace DK; Toth CA
    Am J Ophthalmol; 2009 Feb; 147(2):364-373.e2. PubMed ID: 18848317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid.
    Braaf B; Vermeer KA; Sicam VA; van Zeeburg E; van Meurs JC; de Boer JF
    Opt Express; 2011 Oct; 19(21):20886-903. PubMed ID: 21997098
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Compressed sensing MRI combined with SENSE in partial k-space.
    Liu F; Duan Y; Peterson BS; Kangarlu A
    Phys Med Biol; 2012 Nov; 57(21):N391-403. PubMed ID: 23073235
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema.
    Yeung L; Lima VC; Garcia P; Landa G; Rosen RB
    Ophthalmology; 2009 Jun; 116(6):1158-67. PubMed ID: 19395034
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography.
    Lan G; Li G
    Sci Rep; 2017 Mar; 7():42353. PubMed ID: 28266502
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated segmentation of tissue structures in optical coherence tomography data.
    Gasca F; Ramrath L; Huettmann G; Schweikard A
    J Biomed Opt; 2009; 14(3):034046. PubMed ID: 19566338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3-D adaptive nonlinear complex-diffusion despeckling filter.
    Rodrigues P; Bernardes R
    IEEE Trans Med Imaging; 2012 Dec; 31(12):2205-12. PubMed ID: 22875245
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fiber-based photoacoustic remote sensing microscopy and spectral-domain optical coherence tomography with a dual-function 1050-nm interrogation source.
    Martell M; Haven NJ; Zemp R
    J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34164968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.