BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22859111)

  • 1. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.
    Long X; Bai J; Zhao W; Stoian R; Hui R; Cheng G
    Opt Lett; 2012 Aug; 37(15):3138-40. PubMed ID: 22859111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waveguides fabricated by femtosecond laser exploiting both depressed cladding and stress-induced guiding core.
    Dong MM; Wang CW; Wu ZX; Zhang Y; Pan HH; Zhao QZ
    Opt Express; 2013 Jul; 21(13):15522-9. PubMed ID: 23842339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.
    Liu H; Chen F; Vázquez de Aldana JR; Jaque D
    Opt Lett; 2013 Sep; 38(17):3294-7. PubMed ID: 23988938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam.
    Liao Y; Qi J; Wang P; Chu W; Wang Z; Qiao L; Cheng Y
    Sci Rep; 2016 Jun; 6():28790. PubMed ID: 27346285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embedded optical waveguides fabricated in SF10 glass by low-repetition-rate ultrafast laser.
    Bai J; Long X; Liu X; Huo G; Zhao W; Stoian R; Hui R; Cheng G
    Appl Opt; 2013 Oct; 52(30):7288-94. PubMed ID: 24216582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.
    Liu H; Jia Y; Vázquez de Aldana JR; Jaque D; Chen F
    Opt Express; 2012 Aug; 20(17):18620-9. PubMed ID: 23038502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing.
    Nie W; He R; Cheng C; Rocha U; Rodríguez Vázquez de Aldana J; Jaque D; Chen F
    Opt Lett; 2016 May; 41(10):2169-72. PubMed ID: 27176954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss channel optical waveguide fabrication in Nd(3+)-doped silicate glasses by femtosecond laser direct writing.
    Li SL; Han P; Shi M; Yao Y; Hu B; Wang M; Zhu X
    Opt Express; 2011 Nov; 19(24):23958-64. PubMed ID: 22109420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.
    Okhrimchuk A; Mezentsev V; Shestakov A; Bennion I
    Opt Express; 2012 Feb; 20(4):3832-43. PubMed ID: 22418140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire.
    Bérubé JP; Lapointe J; Dupont A; Bernier M; Vallée R
    Opt Lett; 2019 Jan; 44(1):37-40. PubMed ID: 30645539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Sensitivity of Waveguides Inscribed in Nanoporous Silicate Framework.
    Lijing Z; Zakoldaev RA; Sergeev MM; Petrov AB; Veiko VP; Alodjants AP
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33430472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser-induced microstructures in glasses and applications in micro-optics.
    Qiu J
    Chem Rec; 2004; 4(1):50-8. PubMed ID: 15057868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanded-core waveguides written by femtosecond laser irradiation in bulk optical glasses.
    Liu X; Zhang W; Zhao W; Stoian R; Cheng G
    Opt Express; 2014 Nov; 22(23):28771-82. PubMed ID: 25402116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes.
    Butt MA; Nguyen HD; Ródenas A; Romero C; Moreno P; Vázquez de Aldana JR; Aguiló M; Solé RM; Pujol MC; Díaz F
    Opt Express; 2015 Jun; 23(12):15343-55. PubMed ID: 26193514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct femtosecond laser waveguide writing inside zinc phosphate glass.
    Fletcher LB; Witcher JJ; Troy N; Reis ST; Brow RK; Krol DM
    Opt Express; 2011 Apr; 19(9):7929-36. PubMed ID: 21643042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced nonlinear effects in femtosecond laser-inscribed depressed cladding waveguides in sapphire crystals.
    Li Y; Wu J; Su J; Zeng X; Deng G; Zhou S
    Opt Express; 2024 Jan; 32(3):3933-3945. PubMed ID: 38297603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the refractive index profile of waveguides using defocusing microscopy.
    Lages E; Cardoso W; Almeida GFB; Siman L; Mesquita O; Mendonça CR; Agero U; Pádua S
    Appl Opt; 2018 Oct; 57(29):8699-8704. PubMed ID: 30461946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical waveguides in TiO₂ formed by He ion implantation.
    Bi ZF; Wang L; Liu XH; Zhang SM; Dong MM; Zhao QZ; Wu XL; Wang KM
    Opt Express; 2012 Mar; 20(6):6712-9. PubMed ID: 22418555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heuristic modelling of laser written mid-infrared LiNbO
    Nguyen HD; Ródenas A; Vázquez de Aldana JR; Martínez J; Chen F; Aguiló M; Pujol MC; Díaz F
    Opt Express; 2016 Apr; 24(7):7777-91. PubMed ID: 27137062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inscription of type I and depressed cladding waveguides in lithium niobate using a femtosecond laser.
    Bhardwaj S; Mittholiya K; Bhatnagar A; Bernard R; Dharmadhikari JA; Mathur D; Dharmadhikari AK
    Appl Opt; 2017 Jul; 56(20):5692-5697. PubMed ID: 29047712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.