These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 22859162)

  • 1. Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann-Shack wavefront sensor.
    Cousin SL; Bueno JM; Forget N; Austin DR; Biegert J
    Opt Lett; 2012 Aug; 37(15):3291-3. PubMed ID: 22859162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shack-Hartmann Wavefront Sensing of Ultrashort Optical Vortices.
    Pandey AK; Larrieu T; Dovillaire G; Kazamias S; Guilbaud O
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new wavefront sensor with polar symmetry: quantitative comparisons with a Shack-Hartmann wavefront sensor.
    Carvalho LA; Castro J; Chamon W; Schor P
    J Refract Surg; 2006 Nov; 22(9):954-8. PubMed ID: 17124896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal amplitude and phase retrieval of Bessel-X pulses using a Hartmann-Shack sensor.
    Bonaretti F; Faccio D; Clerici M; Biegert J; Di Trapani P
    Opt Express; 2009 Jun; 17(12):9804-9. PubMed ID: 19506629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acousto-optic wavefront sensing and reconstruction.
    Stup A; Cimet EM; Ribak EN; Albanis V
    Appl Opt; 2009 Jan; 48(1):A1-4. PubMed ID: 19107150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal amplitude and phase retrieval of space-time coupled ultrashort pulses using the Shackled-FROG technique.
    Rubino E; Faccio D; Tartara L; Bates PK; Chalus O; Clerici M; Bonaretti F; Biegert J; Di Trapani P
    Opt Lett; 2009 Dec; 34(24):3854-6. PubMed ID: 20016636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.
    Plantet C; Meimon S; Conan JM; Fusco T
    Opt Express; 2015 Nov; 23(22):28619-33. PubMed ID: 26561131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the plenoptic sensor and the Shack-Hartmann sensor.
    Ko J; Davis CC
    Appl Opt; 2017 May; 56(13):3689-3698. PubMed ID: 28463253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.
    Murphy K; Burke D; Devaney N; Dainty C
    Opt Express; 2010 Jul; 18(15):15448-60. PubMed ID: 20720924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning assisted Shack-Hartmann wavefront sensor for direct wavefront detection.
    Hu L; Hu S; Gong W; Si K
    Opt Lett; 2020 Jul; 45(13):3741-3744. PubMed ID: 32630943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hartmann-Shack wavefront sensing for nonlinear materials characterization.
    Rativa D; de Araujo RE; Gomes AS; Vohnsen B
    Opt Express; 2009 Nov; 17(24):22047-53. PubMed ID: 19997450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the three-dimensional microscope point spread function using a Shack-Hartmann wavefront sensor.
    Beverage JL; Shack RV; Descour MR
    J Microsc; 2002 Jan; 205(Pt 1):61-75. PubMed ID: 11856382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.
    Baranec C; Dekany R
    Appl Opt; 2008 Oct; 47(28):5155-62. PubMed ID: 18830305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor.
    Starikov FA; Kochemasov GG; Kulikov SM; Manachinsky AN; Maslov NV; Ogorodnikov AV; Sukharev SA; Aksenov VP; Izmailov IV; Kanev FY; Atuchin VV; Soldatenkov IS
    Opt Lett; 2007 Aug; 32(16):2291-3. PubMed ID: 17700762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts.
    Chernyshov A; Sterr U; Riehle F; Helmcke J; Pfund J
    Appl Opt; 2005 Oct; 44(30):6419-25. PubMed ID: 16252653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconfigurable wavefront sensor for ultrashort pulses.
    Bock M; Das SK; Fischer C; Diehl M; Börner P; Grunwald R
    Opt Lett; 2012 Apr; 37(7):1154-6. PubMed ID: 22466179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.
    Wang S; Yang P; Xu B; Dong L; Ao M
    Opt Express; 2015 Feb; 23(4):5052-64. PubMed ID: 25836540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-energy/pulse response and high-resolution-CMOS camera for spatiotemporal femtosecond laser pulses characterization @ 1.55 μm.
    Zapata-Farfan J; Contreras-Martínez R; Rosete-Aguilar M; Garduño-Mejía J; Castro-Marín P; Rodríguez-Herrera OG; Bruce NC; Ordóñez-Pérez M; Qureshi N; Ascanio G
    Rev Sci Instrum; 2019 Apr; 90(4):045116. PubMed ID: 31043009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of CMOS Pixel and Electronic Circuitry in the Performance of a Hartmann-Shack Wavefront Sensor.
    Abecassis ÚV; de Lima Monteiro DW; Salles LP; de Moraes Cruz CA; Agra Belmonte PN
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.