These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22859490)

  • 21. Functional electrical stimulation of laryngeal adductor muscle restores mobility of vocal fold and improves voice sounds in cats with unilateral laryngeal paralysis.
    Katada A; Nonaka S; Adachi M; Kunibe I; Arakawa T; Imada M; Hayashi T; Zealear DL; Harabuchi Y
    Neurosci Res; 2004 Oct; 50(2):153-9. PubMed ID: 15380322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selection on vocal output affects laryngeal morphology in rats.
    Lesch R; Schwaha T; Orozco A; Shilling M; Brunelli S; Hofer M; Bowling DL; Zimmerberg B; Fitch WT
    J Anat; 2021 May; 238(5):1179-1190. PubMed ID: 33480050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasonic output from the excised rat larynx.
    Johnson AM; Ciucci MR; Russell JA; Hammer MJ; Connor NP
    J Acoust Soc Am; 2010 Aug; 128(2):EL75-9. PubMed ID: 20707418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Universal mechanisms of sound production and control in birds and mammals.
    Elemans CP; Rasmussen JH; Herbst CT; Düring DN; Zollinger SA; Brumm H; Srivastava K; Svane N; Ding M; Larsen ON; Sober SJ; Švec JG
    Nat Commun; 2015 Nov; 6():8978. PubMed ID: 26612008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanics of sound production in toads of the genus Bufo: passive elements.
    Martin WF
    J Exp Zool; 1971 Mar; 176(3):273-93. PubMed ID: 5548870
    [No Abstract]   [Full Text] [Related]  

  • 26. Excised human larynx in N-vinyl-2-pyrrolidone-embalmed cadavers can produce voiced sound by pliable vocal fold vibration.
    Miyamoto M; Nagase M; Watanabe I; Nakagawa H; Karita K; Tsuji DH; Montagnoli AN; Matsumura G; Saito K
    Anat Sci Int; 2022 Sep; 97(4):347-357. PubMed ID: 35113344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional morphology of the Alligator mississippiensis larynx with implications for vocal production.
    Riede T; Li Z; Tokuda IT; Farmer CG
    J Exp Biol; 2015 Apr; 218(Pt 7):991-8. PubMed ID: 25657203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The very first cry: a multidisciplinary approach toward a model.
    Nicollas R; Vicente J; Brutin D; Giordano J; Medale M; Giovanni A; Ouaknine M; Triglia JM
    Ann Otol Rhinol Laryngol; 2012 Dec; 121(12):821-6. PubMed ID: 23342556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vocal communication in African elephants (Loxodonta africana).
    Soltis J
    Zoo Biol; 2010; 29(2):192-209. PubMed ID: 19434672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A bond graph approach to modeling the anuran vocal production system.
    Kime NM; Ryan MJ; Wilson PS
    J Acoust Soc Am; 2013 Jun; 133(6):4133-44. PubMed ID: 23742365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vibratory Dynamics of Four Types of Excised Larynx Phonations.
    Li L; Zhang Y; Calawerts W; Jiang JJ
    J Voice; 2016 Nov; 30(6):649-655. PubMed ID: 26476848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
    Döllinger M; Berry DA; Kniesburges S
    J Acoust Soc Am; 2016 May; 139(5):2372. PubMed ID: 27250133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aerodynamics of the human larynx during vocal fold vibration.
    Plant RL
    Laryngoscope; 2005 Dec; 115(12):2087-100. PubMed ID: 16369149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of a low frequency sound source in Mysticeti (baleen whales): anatomical establishment of a vocal fold homolog.
    Reidenberg JS; Laitman JT
    Anat Rec (Hoboken); 2007 Jun; 290(6):745-59. PubMed ID: 17516447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laryngeal biomechanics: an overview of mucosal wave mechanics.
    Berke GS; Gerratt BR
    J Voice; 1993 Jun; 7(2):123-8. PubMed ID: 8353625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vibratory pattern of the vocal cord in unilateral paralysis of the cricothyroid muscle. An experimental study.
    Tanabe M; Isshiki N; Kitajima K
    Acta Otolaryngol; 1972 Nov; 74(5):339-45. PubMed ID: 4639726
    [No Abstract]   [Full Text] [Related]  

  • 38. Vocal learning in elephants: neural bases and adaptive context.
    Stoeger AS; Manger P
    Curr Opin Neurobiol; 2014 Oct; 28():101-7. PubMed ID: 25062469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships.
    Zeyl JN; den Ouden O; Köppl C; Assink J; Christensen-Dalsgaard J; Patrick SC; Clusella-Trullas S
    Biol Rev Camb Philos Soc; 2020 Aug; 95(4):1036-1054. PubMed ID: 32237036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of vocal fold epithelium removal on vibration in an excised human larynx model.
    Tse JR; Zhang Z; Long JL
    J Acoust Soc Am; 2015 Jul; 138(1):EL60-4. PubMed ID: 26233062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.