These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 22859490)
41. Phonatory vocal fold function in the excised canine larynx. Slavit DH; Lipton RJ; McCaffrey TV Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129 [TBL] [Abstract][Full Text] [Related]
42. Rapid evolution of the primate larynx? Bowling DL; Dunn JC; Smaers JB; Garcia M; Sato A; Hantke G; Handschuh S; Dengg S; Kerney M; Kitchener AC; Gumpenberger M; Fitch WT PLoS Biol; 2020 Aug; 18(8):e3000764. PubMed ID: 32780733 [TBL] [Abstract][Full Text] [Related]
43. [Mechanical function of the larynx. Induced artificial vibration of the vocal cords in vivo in dogs]. Van Michel C Folia Phoniatr (Basel); 1971; 23(4):239-46. PubMed ID: 5133061 [No Abstract] [Full Text] [Related]
44. Homology and the evolution of vocal folds in the novel avian voice box. Longtine C; Eliason CM; Mishkind D; Lee C; Chiappone M; Goller F; Love J; Kingsley EP; Clarke JA; Tabin CJ Curr Biol; 2024 Feb; 34(3):461-472.e7. PubMed ID: 38183987 [TBL] [Abstract][Full Text] [Related]
45. What can vortices tell us about vocal fold vibration and voice production. Khosla S; Murugappan S; Gutmark E Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068 [TBL] [Abstract][Full Text] [Related]
46. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling. Bailly L; Henrich N; Pelorson X J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769 [TBL] [Abstract][Full Text] [Related]
47. The same but different: human-like elephant calls. Stead N J Exp Biol; 2013 Nov; 216(Pt 21):i-ii. PubMed ID: 24298640 [No Abstract] [Full Text] [Related]
49. Vocal fold elasticity of the Rocky Mountain elk (Cervus elaphus nelsoni) - producing high fundamental frequency vocalization with a very long vocal fold. Riede T; Titze IR J Exp Biol; 2008 Jul; 211(Pt 13):2144-54. PubMed ID: 18552304 [TBL] [Abstract][Full Text] [Related]
50. Acoustical and anatomical determination of sound production and transmission in West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees. Landrau-Giovannetti N; Mignucci-Giannoni AA; Reidenberg JS Anat Rec (Hoboken); 2014 Oct; 297(10):1896-907. PubMed ID: 25044536 [TBL] [Abstract][Full Text] [Related]
51. A computational study of depth of vibration into vocal fold tissues. Palaparthi A; Smith S; Mau T; Titze IR J Acoust Soc Am; 2019 Feb; 145(2):881. PubMed ID: 30823802 [TBL] [Abstract][Full Text] [Related]
52. Observation and analysis of in vivo vocal fold tissue instabilities produced by nonlinear source-filter coupling: a case study. Zañartu M; Mehta DD; Ho JC; Wodicka GR; Hillman RE J Acoust Soc Am; 2011 Jan; 129(1):326-39. PubMed ID: 21303014 [TBL] [Abstract][Full Text] [Related]
53. Muscular and neuronal control of voice production - forgotten findings, current concepts, and new developments. Tracicaru RV; Bräuer L; Döllinger M; Hînganu D; Paulsen F; Hînganu MV Ann Anat; 2024 Aug; 255():152283. PubMed ID: 38763330 [TBL] [Abstract][Full Text] [Related]
54. A cervid vocal fold model suggests greater glottal efficiency in calling at high frequencies. Titze IR; Riede T PLoS Comput Biol; 2010 Aug; 6(8):. PubMed ID: 20808882 [TBL] [Abstract][Full Text] [Related]
56. Subglottal pressure and fundamental frequency control in contact calls of juvenile Alligator mississippiensis. Riede T; Tokuda IT; Farmer CG J Exp Biol; 2011 Sep; 214(Pt 18):3082-95. PubMed ID: 21865521 [TBL] [Abstract][Full Text] [Related]
57. [The role of laryngeal kinesthetic feedback in the control of pitch in speech production]. Duflo S; Ouaknine M; Ghio A; Giovanni A Rev Laryngol Otol Rhinol (Bord); 2007; 128(5):297-303. PubMed ID: 20387375 [TBL] [Abstract][Full Text] [Related]
58. [Formation of the laryngeal sound in the phonation]. Chouard CH Presse Med (1893); 1969 Mar; 77(16):583-6. PubMed ID: 5783379 [No Abstract] [Full Text] [Related]
59. Design of a mechanical larynx with agarose as a soft tissue substitute for vocal fold applications. Choo JQ; Lau DP; Chui CK; Yang T; Chng CB; Teoh SH J Biomech Eng; 2010 Jun; 132(6):065001. PubMed ID: 20887039 [TBL] [Abstract][Full Text] [Related]
60. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges. Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]