These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 22859490)
61. Study of phonation in the excised canine larynx. Yanagi E; Slavit DH; McCaffrey TV Otolaryngol Head Neck Surg; 1991 Oct; 105(4):586-95. PubMed ID: 1762795 [TBL] [Abstract][Full Text] [Related]
62. Long-distance, low-frequency elephant communication. Garstang M J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Oct; 190(10):791-805. PubMed ID: 15349746 [TBL] [Abstract][Full Text] [Related]
63. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. Fitch WT J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1213-22. PubMed ID: 9265764 [TBL] [Abstract][Full Text] [Related]
64. Resonance properties of the vocal folds: in vivo laryngoscopic investigation of the externally excited laryngeal vibrations. Svec JG; Horácek J; Sram F; Veselý J J Acoust Soc Am; 2000 Oct; 108(4):1397-407. PubMed ID: 11051466 [TBL] [Abstract][Full Text] [Related]
65. Noninvasive measurement of traveling wave velocity in the canine larynx. Nasri S; Sercarz JA; Berke GS Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):758-66. PubMed ID: 7944166 [TBL] [Abstract][Full Text] [Related]
66. Observations on laryngeal disease, laryngeal behavior and voice. Moore GP Ann Otol Rhinol Laryngol; 1976; 85(5 Pt.1):553-64. PubMed ID: 791049 [TBL] [Abstract][Full Text] [Related]
67. Animal behaviour: elephants are capable of vocal learning. Poole JH; Tyack PL; Stoeger-Horwath AS; Watwood S Nature; 2005 Mar; 434(7032):455-6. PubMed ID: 15791244 [TBL] [Abstract][Full Text] [Related]
68. The human instrument. Titze IR Sci Am; 2008 Jan; 298(1):94-101. PubMed ID: 18225701 [No Abstract] [Full Text] [Related]
69. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model. Zheng X; Mittal R; Xue Q; Bielamowicz S J Acoust Soc Am; 2011 Jul; 130(1):404-15. PubMed ID: 21786908 [TBL] [Abstract][Full Text] [Related]
70. Existence of vocal folds in the larynx of odontoceti (toothed whales). Reidenberg JS; Laitman JT Anat Rec; 1988 Aug; 221(4):884-91. PubMed ID: 3189879 [TBL] [Abstract][Full Text] [Related]
71. Investigation of four distinct glottal configurations in classical singing--a pilot study. Herbst CT; Ternström S; Svec JG J Acoust Soc Am; 2009 Mar; 125(3):EL104-9. PubMed ID: 19275279 [TBL] [Abstract][Full Text] [Related]
72. Operant control and call usage learning in African elephants. Stoeger AS; Baotic A Philos Trans R Soc Lond B Biol Sci; 2021 Oct; 376(1836):20200254. PubMed ID: 34482733 [TBL] [Abstract][Full Text] [Related]
73. Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model. Schwarz R; Döllinger M; Wurzbacher T; Eysholdt U; Lohscheller J J Acoust Soc Am; 2008 May; 123(5):2717-32. PubMed ID: 18529190 [TBL] [Abstract][Full Text] [Related]
75. Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics. Yang A; Lohscheller J; Berry DA; Becker S; Eysholdt U; Voigt D; Döllinger M J Acoust Soc Am; 2010 Feb; 127(2):1014-31. PubMed ID: 20136223 [TBL] [Abstract][Full Text] [Related]
76. [The review of anatomical and clinical terminology concerning vocal folds]. Slusarczyk K; Misiołek M; Namysłowski G; Slusarczyk R Otolaryngol Pol; 2004; 58(5):1023-6. PubMed ID: 15732796 [TBL] [Abstract][Full Text] [Related]
77. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling. Moisik SR; Esling JH J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007 [TBL] [Abstract][Full Text] [Related]
78. Effects of asymmetric superior laryngeal nerve stimulation on glottic posture, acoustics, vibration. Chhetri DK; Neubauer J; Bergeron JL; Sofer E; Peng KA; Jamal N Laryngoscope; 2013 Dec; 123(12):3110-6. PubMed ID: 23712542 [TBL] [Abstract][Full Text] [Related]
79. Vocal fold vibration in simulated head voice phonation in excised canine larynges. Shiotani A; Fukuda H; Kawaida M; Kanzaki J Eur Arch Otorhinolaryngol; 1996; 253(6):356-63. PubMed ID: 8858261 [TBL] [Abstract][Full Text] [Related]
80. Effect of variations to a simulated system of straw phonation therapy on aerodynamic parameters using excised canine larynges. Conroy ER; Hennick TM; Awan SN; Hoffman MR; Smith BL; Jiang JJ J Voice; 2014 Jan; 28(1):1-6. PubMed ID: 24286626 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]