BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22859948)

  • 1. Insight into temperature dependence of GTPase activity in human guanylate binding protein-1.
    Rani A; Pandita E; Rahman S; Deep S; Sau AK
    PLoS One; 2012; 7(7):e40487. PubMed ID: 22859948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient kinetic investigation of GTP hydrolysis catalyzed by interferon-gamma-induced hGBP1 (human guanylate binding protein 1).
    Kunzelmann S; Praefcke GJ; Herrmann C
    J Biol Chem; 2006 Sep; 281(39):28627-35. PubMed ID: 16873363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrameric assembly of hGBP1 is crucial for both stimulated GMP formation and antiviral activity.
    Pandita E; Rajan S; Rahman S; Mullick R; Das S; Sau AK
    Biochem J; 2016 Jun; 473(12):1745-57. PubMed ID: 27071416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The guanine cap of human guanylate-binding protein 1 is responsible for dimerization and self-activation of GTP hydrolysis.
    Wehner M; Kunzelmann S; Herrmann C
    FEBS J; 2012 Jan; 279(2):203-10. PubMed ID: 22059445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide binding and self-stimulated GTPase activity of human guanylate-binding protein 1 (hGBP1).
    Kunzelmann S; Praefcke GJ; Herrmann C
    Methods Enzymol; 2005; 404():512-27. PubMed ID: 16413296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif.
    Praefcke GJ; Geyer M; Schwemmle M; Robert Kalbitzer H; Herrmann C
    J Mol Biol; 1999 Sep; 292(2):321-32. PubMed ID: 10493878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP.
    Schwemmle M; Staeheli P
    J Biol Chem; 1994 Apr; 269(15):11299-305. PubMed ID: 7512561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic activity of human guanylate-binding protein 1 coupled to the release of structural restraints imposed by the C-terminal domain.
    Ince S; Zhang P; Kutsch M; Krenczyk O; Shydlovskyi S; Herrmann C
    FEBS J; 2021 Jan; 288(2):582-599. PubMed ID: 32352209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis.
    Praefcke GJ; Kloep S; Benscheid U; Lilie H; Prakash B; Herrmann C
    J Mol Biol; 2004 Nov; 344(1):257-69. PubMed ID: 15504415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetramerization of human guanylate-binding protein 1 is mediated by coiled-coil formation of the C-terminal α-helices.
    Syguda A; Bauer M; Benscheid U; Ostler N; Naschberger E; Ince S; Stürzl M; Herrmann C
    FEBS J; 2012 Jul; 279(14):2544-54. PubMed ID: 22607347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of GMP formation in hGBP1 is mediated by W79 and its effect on the antiviral activity.
    Raninga N; Nayeem SM; Gupta S; Mullick R; Pandita E; Das S; Deep S; Sau AK
    FEBS J; 2021 May; 288(9):2970-2988. PubMed ID: 33113220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the lower GMP formation in large GTPase hGBP-2 and role of its individual domains in regulation of GTP hydrolysis.
    Rajan S; Pandita E; Mittal M; Sau AK
    FEBS J; 2019 Oct; 286(20):4103-4121. PubMed ID: 31199074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
    Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimerization and its role in GMP formation by human guanylate binding proteins.
    Abdullah N; Balakumari M; Sau AK
    Biophys J; 2010 Oct; 99(7):2235-44. PubMed ID: 20923658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. hGBP1 Coordinates Chlamydia Restriction and Inflammasome Activation through Sequential GTP Hydrolysis.
    Xavier A; Al-Zeer MA; Meyer TF; Daumke O
    Cell Rep; 2020 May; 31(7):107667. PubMed ID: 32433976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of individual domains and identification of internal gap in human guanylate binding protein-1.
    Abdullah N; Srinivasan B; Modiano N; Cresswell P; Sau AK
    J Mol Biol; 2009 Feb; 386(3):690-703. PubMed ID: 19150356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide dependent cysteine reactivity of hGBP1 uncovers a domain movement during GTP hydrolysis.
    Vöpel T; Kunzelmann S; Herrmann C
    FEBS Lett; 2009 Jun; 583(12):1923-7. PubMed ID: 19463820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural requirements for membrane binding of human guanylate-binding protein 1.
    Sistemich L; Dimitrov Stanchev L; Kutsch M; Roux A; Günther Pomorski T; Herrmann C
    FEBS J; 2021 Jul; 288(13):4098-4114. PubMed ID: 33405388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference in Catalytic Loop Repositioning Leads to GMP Variation between Two Human GBP Homologues.
    Mittal M; Kausar T; Rajan S; Rashmi D; Sau AK
    Biochemistry; 2023 May; 62(9):1509-1526. PubMed ID: 37042791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GTPase properties of the interferon-induced human guanylate-binding protein 2.
    Neun R; Richter MF; Staeheli P; Schwemmle M
    FEBS Lett; 1996 Jul; 390(1):69-72. PubMed ID: 8706832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.