BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22859968)

  • 1. The natural history of class I primate alcohol dehydrogenases includes gene duplication, gene loss, and gene conversion.
    Carrigan MA; Uryasev O; Davis RP; Zhai L; Hurley TD; Benner SA
    PLoS One; 2012; 7(7):e41175. PubMed ID: 22859968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolution of growth hormone gene family in old world monkeys and hominoids.
    Ye C; Li Y; Shi P; Zhang YP
    Gene; 2005 May; 350(2):183-92. PubMed ID: 15848116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservative evolution in duplicated genes of the primate Class I ADH cluster.
    Oota H; Dunn CW; Speed WC; Pakstis AJ; Palmatier MA; Kidd JR; Kidd KK
    Gene; 2007 May; 392(1-2):64-76. PubMed ID: 17204375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of growth hormone in primates: the GH gene clusters of the New World monkeys marmoset (Callithrix jacchus) and white-fronted capuchin (Cebus albifrons).
    Wallis OC; Wallis M
    J Mol Evol; 2006 Nov; 63(5):591-601. PubMed ID: 17009125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of class I alcohol dehydrogenase genes in catarrhine primates: gene conversion, substitution rates, and gene regulation.
    Cheung B; Holmes RS; Easteal S; Beacham IR
    Mol Biol Evol; 1999 Jan; 16(1):23-36. PubMed ID: 10331249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mammalian alcohol dehydrogenase genome shows several gene duplications and gene losses resulting in a large set of different enzymes including pseudoenzymes.
    Östberg LJ; Persson B; Höög JO
    Chem Biol Interact; 2015 Jun; 234():80-4. PubMed ID: 25479062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision.
    Matsui A; Go Y; Niimura Y
    Mol Biol Evol; 2010 May; 27(5):1192-200. PubMed ID: 20061342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae).
    Zheng X; Hu C; Spooner D; Liu J; Cao J; Teng Y
    BMC Evol Biol; 2011 Sep; 11():255. PubMed ID: 21917170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequent segmental sequence exchanges and rapid gene duplication characterize the MHC class I genes in lemurs.
    Go Y; Satta Y; Kawamoto Y; Rakotoarisoa G; Randrianjafy A; Koyama N; Hirai H
    Immunogenetics; 2003 Oct; 55(7):450-61. PubMed ID: 14530885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of genetic diversification within the Adh gene family in the grasses (Poaceae).
    Gaut BS; Peek AS; Morton BR; Clegg MT
    Mol Biol Evol; 1999 Aug; 16(8):1086-97. PubMed ID: 10474904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A non-human primate BAC resource to study interchromosomal segmental duplications.
    Kirsch S; Hodler C; Schempp W
    Cytogenet Genome Res; 2009; 125(4):253-9. PubMed ID: 19864887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection.
    Maston GA; Ruvolo M
    Mol Biol Evol; 2002 Mar; 19(3):320-35. PubMed ID: 11861891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution of GH in primates: characterisation of the GH genes from slow loris and marmoset defines an episode of rapid evolutionary change.
    Wallis OC; Zhang YP; Wallis M
    J Mol Endocrinol; 2001 Jun; 26(3):249-58. PubMed ID: 11357061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade.
    Page SL; Goodman M
    Mol Phylogenet Evol; 2001 Jan; 18(1):14-25. PubMed ID: 11161738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular history of gene conversions in the primate fetal gamma-globin genes. Nucleotide sequences from the common gibbon, Hylobates lar.
    Fitch DH; Mainone C; Goodman M; Slightom JL
    J Biol Chem; 1990 Jan; 265(2):781-93. PubMed ID: 2295619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of regulatory evolution in primate beta-globin gene clusters: cis-mediated acquisition of simian gamma fetal expression patterns.
    Chiu CH; Schneider H; Slightom JL; Gumucio DL; Goodman M
    Gene; 1997 Dec; 205(1-2):47-57. PubMed ID: 9461379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of two alcohol dehydrogenase (Adh) loci from the olive fruit fly, Bactrocera (Dacus) oleae and implications for Adh duplication in dipteran insects.
    Goulielmos GN; Cosmidis N; Loukas M; Tsakas S; Zouros E
    J Mol Evol; 2001 Jan; 52(1):29-39. PubMed ID: 11139292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primate-specific spliced PMCHL RNAs are non-protein coding in human and macaque tissues.
    Schmieder S; Darré-Toulemonde F; Arguel MJ; Delerue-Audegond A; Christen R; Nahon JL
    BMC Evol Biol; 2008 Dec; 8():330. PubMed ID: 19068116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the merozoite surface protein 7 (msp7) family in Plasmodium vivax and P. falciparum: A comparative approach.
    Castillo AI; Andreína Pacheco M; Escalante AA
    Infect Genet Evol; 2017 Jun; 50():7-19. PubMed ID: 28163236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evolutionary driver of interspersed segmental duplications in primates.
    Cantsilieris S; Sunkin SM; Johnson ME; Anaclerio F; Huddleston J; Baker C; Dougherty ML; Underwood JG; Sulovari A; Hsieh P; Mao Y; Catacchio CR; Malig M; Welch AE; Sorensen M; Munson KM; Jiang W; Girirajan S; Ventura M; Lamb BT; Conlon RA; Eichler EE
    Genome Biol; 2020 Aug; 21(1):202. PubMed ID: 32778141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.