BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22860590)

  • 1. Effect of high hydrostatic pressure on Aeromonas hydrophila AH 191 growth in milk.
    Durães-Carvalho R; Souza AR; Martins LM; Sprogis AC; Bispo JA; Bonafe CF; Yano T
    J Food Sci; 2012 Aug; 77(8):M417-24. PubMed ID: 22860590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of growth and recovery temperatures on pressure resistance of Listeria monocytogenes.
    Shearer AE; Neetoo HS; Chen H
    Int J Food Microbiol; 2010 Jan; 136(3):359-63. PubMed ID: 19931930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of pressure-induced germination of Bacillus sporothermodurans spores in water and milk.
    Aouadhi C; Simonin H; Prévost H; Lamballerie Md; Maaroufi A; Mejri S
    Food Microbiol; 2012 May; 30(1):1-7. PubMed ID: 22265276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.
    Van Opstal I; Bagamboula CF; Vanmuysen SC; Wuytack EY; Michiels CW
    Int J Food Microbiol; 2004 Apr; 92(2):227-34. PubMed ID: 15109800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of non-thermal processing by High Hydrostatic Pressure on the survival of probiotic microorganisms: study on Bifidobacteria spp.
    Tsevdou MS; Taoukis PS
    Anaerobe; 2011 Dec; 17(6):456-8. PubMed ID: 21726655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk.
    Koseki S; Mizuno Y; Yamamoto K
    Food Microbiol; 2008 Apr; 25(2):288-93. PubMed ID: 18206771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of growth temperature and growth phase on the inactivation of Listeria monocytogenes in whole milk subject to high pressure processing.
    Hayman MM; Anantheswaran RC; Knabel SJ
    Int J Food Microbiol; 2007 Apr; 115(2):220-6. PubMed ID: 17173999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Aeromonas hydrophila in the whey cheeses Myzithra, Anthotyros, and Manouri during storage at 4 and 12 degrees C.
    Papageorgiou DK; Melas DS; Abrahim A; Angelidis AS
    J Food Prot; 2006 Feb; 69(2):308-14. PubMed ID: 16496570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of Vibrio parahaemolyticus in hard clams (Mercanaria mercanaria) by high hydrostatic pressure (HHP) and the effect of HHP on the physical characteristics of hard clam meat.
    Mootian GK; Flimlin GE; Karwe MV; Schaffner DW
    J Food Sci; 2013 Feb; 78(2):E251-7. PubMed ID: 23324022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of viability of Aeromonas hydrophila in increasing concentrations of sodium chloride at different temperatures by flow cytometry and plate count technique.
    Pianetti A; Manti A; Boi P; Citterio B; Sabatini L; Papa S; Rocchi MB; Bruscolini F
    Int J Food Microbiol; 2008 Oct; 127(3):252-60. PubMed ID: 18765166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pressurization on some contamination flora in beef pate.
    Gogus U
    J Food Sci; 2012 Oct; 77(10):M550-9. PubMed ID: 22924817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditions for a 5-log reduction of Vibrio vulnificus in oysters through high hydrostatic pressure treatment.
    Kural AG; Chen H
    Int J Food Microbiol; 2008 Feb; 122(1-2):180-7. PubMed ID: 18177963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions.
    Paredes-Sabja D; Gonzalez M; Sarker MR; Torres JA
    J Food Sci; 2007 Aug; 72(6):M202-6. PubMed ID: 17995687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk.
    Chen H
    Food Microbiol; 2007 May; 24(3):197-204. PubMed ID: 17188197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of pH, salt concentration and temperature on the growth of Aeromonas hydrophila.
    Vivekanandhan G; Savithamani K; Lakshmanaperumalsamy P
    J Environ Biol; 2003 Oct; 24(4):373-9. PubMed ID: 15248649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene cloning, expression, and characterization of recombinant aerolysin from Aeromonas hydrophila.
    Singh V; Somvanshi P; Rathore G; Kapoor D; Mishra BN
    Appl Biochem Biotechnol; 2010 Apr; 160(7):1985-91. PubMed ID: 19763901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the polymerase chain reaction (PCR) to detection of the aerolysin gene in whole cell cultures of beta-hemolytic Aeromonas hydrophila.
    Lior H; Johnson WM
    Experientia; 1991 May; 47(5):421-4. PubMed ID: 2044689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of high-pressure processing on inactivation of Salmonella Typhimurium, eating quality, and microstructure of raw chicken breast fillets.
    Tananuwong K; Chitsakun T; Tattiyakul J
    J Food Sci; 2012 Nov; 77(11):E321-7. PubMed ID: 23095014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential application of high hydrostatic pressure to eliminate Escherichia coli O157:H7 on alfalfa sprouted seeds.
    Neetoo H; Ye M; Chen H
    Int J Food Microbiol; 2008 Dec; 128(2):348-53. PubMed ID: 18954917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The occurrence of cytotoxic Aeromonas hydrophila strains in Italian mineral and thermal waters.
    Biscardi D; Castaldo A; Gualillo O; de Fusco R
    Sci Total Environ; 2002 Jun; 292(3):255-63. PubMed ID: 12146524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.