These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22860897)

  • 1. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions.
    Han Y; Wang X; Dai H; Li S
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4616-22. PubMed ID: 22860897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.
    Kandori K; Oda S; Fukusumi M; Morisada Y
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):140-5. PubMed ID: 19515538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.
    Kandori K; Kuroda T; Togashi S; Katayama E
    J Phys Chem B; 2011 Feb; 115(4):653-9. PubMed ID: 21162543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells.
    Chen L; Mccrate JM; Lee JC; Li H
    Nanotechnology; 2011 Mar; 22(10):105708. PubMed ID: 21289408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid-dopamine conjugate.
    Kim HH; Park JB; Kang MJ; Park YH
    Int J Biol Macromol; 2014 Sep; 70():516-22. PubMed ID: 24999272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of surface charge on hydroxyapatite nucleation.
    Zhu P; Masuda Y; Koumoto K
    Biomaterials; 2004 Aug; 25(17):3915-21. PubMed ID: 15020168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agglutination of like-charged red blood cells induced by binding of beta2-glycoprotein I to outer cell surface.
    Lokar M; Urbanija J; Frank M; Hägerstrand H; Rozman B; Bobrowska-Hägerstrand M; Iglic A; Kralj-Iglic V
    Bioelectrochemistry; 2008 Aug; 73(2):110-6. PubMed ID: 18495556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite.
    Bodhak S; Bose S; Bandyopadhyay A
    Acta Biomater; 2009 Jul; 5(6):2178-88. PubMed ID: 19303377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.
    Xiao X; Montaño GA; Edwards TL; Allen A; Achyuthan KE; Polsky R; Wheeler DR; Brozik SM
    Langmuir; 2012 Dec; 28(50):17396-403. PubMed ID: 23163515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of red blood cells in suspension by electrostatic interactions with culture plates.
    Baek EJ; You J; Kim MS; Lee SY; Cho SJ; Kim E; Kim HO
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1325-34. PubMed ID: 20302446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP.
    Wang Y; Xiao Y; Huang X; Lang M
    J Colloid Interface Sci; 2011 Aug; 360(2):415-21. PubMed ID: 21601216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite.
    Nie Y; Hu C; Kong C
    J Hazard Mater; 2012 Sep; 233-234():194-9. PubMed ID: 22841297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red blood cells decorated with functionalized core-shell magnetic nanoparticles: elucidation of the adsorption mechanism.
    Mai TD; d'Orlyé F; Ménager C; Varenne A; Siaugue JM
    Chem Commun (Camb); 2013 Jun; 49(47):5393-5. PubMed ID: 23652340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonochemical preparation of hydroxyapatite nanoparticles stabilized by glycosaminoglycans.
    Han Y; Li S; Wang X; Bauer I; Yin M
    Ultrason Sonochem; 2007 Mar; 14(3):286-90. PubMed ID: 16904363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups.
    Choi HW; Lee HJ; Kim KJ; Kim HM; Lee SC
    J Colloid Interface Sci; 2006 Dec; 304(1):277-81. PubMed ID: 17010357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature synthesis of nanoparticle-assembled, transparent, and low-crystallized hydroxyapatite blocks.
    Okada M; Furuzono T
    J Colloid Interface Sci; 2011 Aug; 360(2):457-62. PubMed ID: 21570086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects.
    Zhao Y; Sun X; Zhang G; Trewyn BG; Slowing II; Lin VS
    ACS Nano; 2011 Feb; 5(2):1366-75. PubMed ID: 21294526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly-L-arginine-hydroxyapatite nanoparticle complexes translocate through lipid bilayer membranes.
    Ueno S; Shimabayashi S
    Biomed Mater Eng; 2009; 19(2-3):111-9. PubMed ID: 19581704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.