These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2286094)

  • 1. Finite element analysis of bioelectric phenomena.
    Miller CE; Henriquez CS
    Crit Rev Biomed Eng; 1990; 18(3):207-33. PubMed ID: 2286094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.
    Trew ML; Smaill BH; Bullivant DP; Hunter PJ; Pullan AJ
    Math Biosci; 2005 Dec; 198(2):169-89. PubMed ID: 16140344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical current density model from surface electrodes.
    Waugaman WA
    Biomed Sci Instrum; 1997; 34():131-6. PubMed ID: 9603026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model.
    Huang Q; Eason JC; Claydon FJ
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of internal electric current distribution from surface application in atrophied muscle tissue.
    Waugaman WA
    Biomed Sci Instrum; 2001; 37():361-6. PubMed ID: 11347417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verification of the finite element method to model subthreshold electrical current density in saline.
    Waugaman WA
    Biomed Sci Instrum; 1999; 35():367-72. PubMed ID: 11143379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New finite difference formulations for general inhomogeneous anisotropic bioelectric problems.
    Saleheen HI; Ng KT
    IEEE Trans Biomed Eng; 1997 Sep; 44(9):800-9. PubMed ID: 9282472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment.
    Schmidt H; Heuer F; Drumm J; Klezl Z; Claes L; Wilke HJ
    Clin Biomech (Bristol); 2007 May; 22(4):377-84. PubMed ID: 17204355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simulation study of the reaction of human heart to biphasic electrical shocks.
    Popp LM; Seemann G; Dössel O
    BMC Cardiovasc Disord; 2004 Jun; 4():9. PubMed ID: 15212691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unconditionally stable numerical method for the Luo-Rudy 1 model used in simulations of defibrillation.
    Hanslien M; Sundnes J; Tveito A
    Math Biosci; 2007 Aug; 208(2):375-92. PubMed ID: 17306311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lumped-parameter model for in vivo cochlear stimulation.
    Suesserman MF; Spelman FA
    IEEE Trans Biomed Eng; 1993 Mar; 40(3):237-45. PubMed ID: 8335327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for electrical stimulation of excitable tissue.
    Roth BJ
    Crit Rev Biomed Eng; 1994; 22(3-4):253-305. PubMed ID: 8598130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical current distribution under transthoracic defibrillation and pacing electrodes.
    Papazov S; Kostov Z; Daskalov I
    J Med Eng Technol; 2002; 26(1):22-7. PubMed ID: 11924843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.
    Lee CF; Chen PR; Lee WJ; Chen JH; Liu TC
    Laryngoscope; 2006 May; 116(5):711-6. PubMed ID: 16652076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3-D hybrid finite element model to characterize the electrical behavior of cutaneous tissues.
    Hartinger AE; Guardo R; Kokta V; Gagnon H
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):780-9. PubMed ID: 19932994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical defibrillation optimization: an automated, iterative parallel finite-element approach.
    Hutchinson SA; Ng KT; Shadid JN; Nadeem A
    IEEE Trans Biomed Eng; 1997 Apr; 44(4):278-89. PubMed ID: 9125810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dipole models for the EEG and MEG.
    Schimpf PH; Ramon C; Haueisen J
    IEEE Trans Biomed Eng; 2002 May; 49(5):409-18. PubMed ID: 12002172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is all ventricular fibrillation the same? A comparison of ischemically induced with electrically induced ventricular fibrillation in a porcine cardiac arrest and resuscitation model.
    Niemann JT; Rosborough JP; Youngquist S; Thomas J; Lewis RJ
    Crit Care Med; 2007 May; 35(5):1356-61. PubMed ID: 17414084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.