BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22861686)

  • 1. Deposition of Cryptosporidium parvum oocysts in porous media: a synthesis of attachment efficiencies measured under varying environmental conditions.
    Park Y; Atwill ER; Hou L; Packman AI; Harter T
    Environ Sci Technol; 2012 Sep; 46(17):9491-500. PubMed ID: 22861686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media.
    Kim HN; Walker SL; Bradford SA
    Water Res; 2010 Feb; 44(4):1213-23. PubMed ID: 19854467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media.
    Mohanram A; Ray C; Harvey RW; Metge DW; Ryan JN; Chorover J; Eberl DD
    Water Res; 2010 Oct; 44(18):5334-44. PubMed ID: 20637489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of surface proteins in the deposition kinetics of Cryptosporidium parvum oocysts.
    Kuznar ZA; Elimelech M
    Langmuir; 2005 Jan; 21(2):710-6. PubMed ID: 15641844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale Cryptosporidium/sand interactions in water treatment.
    Tufenkji N; Dixon DR; Considine R; Drummond CJ
    Water Res; 2006 Oct; 40(18):3315-31. PubMed ID: 16979211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition.
    Tufenkji N; Elimelech M
    Environ Sci Technol; 2005 May; 39(10):3620-9. PubMed ID: 15952366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ferric oxyhydroxide grain coatings on the transport of bacteriophage PRD1 and Cryptosporidium parvum oocysts in saturated porous media.
    Abudalo RA; Bogatsu YG; Ryan JN; Harvey RW; Metge DW; Elimelech M
    Environ Sci Technol; 2005 Sep; 39(17):6412-9. PubMed ID: 16190194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium.
    Abudalo RA; Ryan JN; Harvey RW; Metge DW; Landkamer L
    Water Res; 2010 Feb; 44(4):1104-13. PubMed ID: 19853880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of collector alternating charged patches on transport of Cryptosporidium parvum oocysts in a patchwise charged heterogeneous micromodel.
    Liu Y; Zhang C; Hu D; Kuhlenschmidt MS; Kuhlenschmidt TB; Mylon SE; Kong R; Bhargava R; Nguyen TH
    Environ Sci Technol; 2013 Mar; 47(6):2670-8. PubMed ID: 23373745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.
    Luo X; Jedlicka S; Jellison K
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27793825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotin- and glycoprotein-coated microspheres: potential surrogates for studying filtration of cryptosporidium parvum in porous media.
    Pang L; Nowostawska U; Weaver L; Hoffman G; Karmacharya A; Skinner A; Karki N
    Environ Sci Technol; 2012 Nov; 46(21):11779-87. PubMed ID: 22978441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and retention of Cryptosporidium parvum oocysts in sandy soils.
    SantamarĂ­a J; Brusseau ML; Araujo J; Orosz-Coghlan P; Blanford WJ; Gerba CP
    J Environ Qual; 2012; 41(4):1246-52. PubMed ID: 22751068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of Cryptosporidium parvum oocysts in a silicon micromodel.
    Liu Y; Zhang C; Hilpert M; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Environ Sci Technol; 2012 Feb; 46(3):1471-9. PubMed ID: 22229872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition and conformation of Cryptosporidium parvum oocyst wall surface macromolecules and their effect on adhesion kinetics of oocysts on quartz surface.
    Liu Y; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Biomacromolecules; 2010 Aug; 11(8):2109-15. PubMed ID: 20690718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of Cryptosporidium parvum with suspended particles: impact on oocyst sedimentation.
    Searcy KE; Packman AI; Atwill ER; Harter T
    Appl Environ Microbiol; 2005 Feb; 71(2):1072-8. PubMed ID: 15691968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration.
    Tufenkji N; Miller GF; Ryan JN; Harvey RW; Elimelech M
    Environ Sci Technol; 2004 Nov; 38(22):5932-8. PubMed ID: 15573591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deposition of Cryptosporidium parvum oocysts on natural organic matter surfaces: microscopic evidence for secondary minimum deposition in a radial stagnation point flow cell.
    Liu Y; Janjaroen D; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Langmuir; 2009 Feb; 25(3):1594-605. PubMed ID: 19133757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Straining, attachment, and detachment of cryptosporidium oocysts in saturated porous media.
    Bradford SA; Bettahar M
    J Environ Qual; 2005; 34(2):469-78. PubMed ID: 15758099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2006 Mar; 40(6):1837-42. PubMed ID: 16570605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of Cryptosporidium parvum oocysts in sandy soil: impact of length scale.
    SantamarĂ­a J; Quinonez-Diaz Mde J; Lemond L; Arnold RG; Quanrud D; Gerba C; Brusseau ML
    J Environ Monit; 2011 Dec; 13(12):3481-4. PubMed ID: 22027739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.