These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 22861831)

  • 1. Quantum adiabatic algorithm and scaling of gaps at first-order quantum phase transitions.
    Laumann CR; Moessner R; Scardicchio A; Sondhi SL
    Phys Rev Lett; 2012 Jul; 109(3):030502. PubMed ID: 22861831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum transitions driven by one-bond defects in quantum Ising rings.
    Campostrini M; Pelissetto A; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042123. PubMed ID: 25974454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of the performance of quantum annealing and simulated annealing.
    Nishimori H; Tsuda J; Knysh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012104. PubMed ID: 25679567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Undecidability of the spectral gap.
    Cubitt TS; Perez-Garcia D; Wolf MM
    Nature; 2015 Dec; 528(7581):207-11. PubMed ID: 26659181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional Ising model with nearest- and next-nearest-neighbor interactions.
    dos Anjos RA; Viana JR; de Sousa JR; Plascak JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):022103. PubMed ID: 17930090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-order transitions and the performance of quantum algorithms in random optimization problems.
    Jörg T; Krzakala F; Semerjian G; Zamponi F
    Phys Rev Lett; 2010 May; 104(20):207206. PubMed ID: 20867059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum annealing with antiferromagnetic fluctuations.
    Seki Y; Nishimori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051112. PubMed ID: 23004708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-size scaling at the first-order quantum transitions of quantum Potts chains.
    Campostrini M; Nespolo J; Pelissetto A; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052103. PubMed ID: 26066115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New dynamical scaling universality for quantum networks across adiabatic quantum phase transitions.
    Acevedo OL; Quiroga L; Rodríguez FJ; Johnson NF
    Phys Rev Lett; 2014 Jan; 112(3):030403. PubMed ID: 24484124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-order phase transition in the quantum adiabatic algorithm.
    Young AP; Knysh S; Smelyanskiy VN
    Phys Rev Lett; 2010 Jan; 104(2):020502. PubMed ID: 20366577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological quantum phase transitions and topological flat bands on the kagomé lattice.
    Liu R; Chen WC; Wang YF; Gong CD
    J Phys Condens Matter; 2012 Aug; 24(30):305602. PubMed ID: 22771789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-size scaling at first-order quantum transitions.
    Campostrini M; Nespolo J; Pelissetto A; Vicari E
    Phys Rev Lett; 2014 Aug; 113(7):070402. PubMed ID: 25170692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum versus classical annealing: insights from scaling theory and results for spin glasses on 3-regular graphs.
    Liu CW; Polkovnikov A; Sandvik AW
    Phys Rev Lett; 2015 Apr; 114(14):147203. PubMed ID: 25910158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of the quantum search and quench-induced first-order phase transitions.
    Coulamy IB; Saguia A; Sarandy MS
    Phys Rev E; 2017 Feb; 95(2-1):022127. PubMed ID: 28297935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems.
    Hen I; Young AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061152. PubMed ID: 22304085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digitized adiabatic quantum computing with a superconducting circuit.
    Barends R; Shabani A; Lamata L; Kelly J; Mezzacapo A; Las Heras U; Babbush R; Fowler AG; Campbell B; Chen Y; Chen Z; Chiaro B; Dunsworth A; Jeffrey E; Lucero E; Megrant A; Mutus JY; Neeley M; Neill C; O'Malley PJ; Quintana C; Roushan P; Sank D; Vainsencher A; Wenner J; White TC; Solano E; Neven H; Martinis JM
    Nature; 2016 Jun; 534(7606):222-6. PubMed ID: 27279216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum phase transition in a disordered long-range transverse Ising antiferromagnet.
    Chandra AK; Inoue J; Chakrabarti BK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021101. PubMed ID: 20365524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple glass models and their quantum annealing.
    Jörg T; Krzakala F; Kurchan J; Maggs AC
    Phys Rev Lett; 2008 Oct; 101(14):147204. PubMed ID: 18851567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convex-set description of quantum phase transitions in the transverse Ising model using reduced-density-matrix theory.
    Schwerdtfeger CA; Mazziotti DA
    J Chem Phys; 2009 Jun; 130(22):224102. PubMed ID: 19530757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transitionless driving on adiabatic search algorithm.
    Oh S; Kais S
    J Chem Phys; 2014 Dec; 141(22):224108. PubMed ID: 25494733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.