BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 22862831)

  • 1. Distribution and prediction of catalytic domains in 2-oxoglutarate dependent dioxygenases.
    Kundu S
    BMC Res Notes; 2012 Aug; 5():410. PubMed ID: 22862831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe(2)OG: an integrated HMM profile-based web server to predict and analyze putative non-haem iron(II)- and 2-oxoglutarate-dependent dioxygenase function in protein sequences.
    Kundu S
    BMC Res Notes; 2021 Mar; 14(1):80. PubMed ID: 33648553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases.
    Kundu S
    Front Plant Sci; 2015; 6():98. PubMed ID: 25814993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase.
    Iyer LM; Abhiman S; de Souza RF; Aravind L
    Nucleic Acids Res; 2010 Sep; 38(16):5261-79. PubMed ID: 20423905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases.
    Aravind L; Koonin EV
    Genome Biol; 2001; 2(3):RESEARCH0007. PubMed ID: 11276424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD.
    Reuter K; Pittelkow M; Bursy J; Heine A; Craan T; Bremer E
    PLoS One; 2010 May; 5(5):e10647. PubMed ID: 20498719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.
    Iyer LM; Tahiliani M; Rao A; Aravind L
    Cell Cycle; 2009 Jun; 8(11):1698-710. PubMed ID: 19411852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Insight on the Activity and Substrate Selectivity of Nonheme Iron Dioxygenases.
    de Visser SP
    Chem Rec; 2018 Oct; 18(10):1501-1516. PubMed ID: 29878456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assay for Fe(II)/2-oxoglutarate-dependent dioxygenases by enzyme-coupled detection of succinate formation.
    Luo L; Pappalardi MB; Tummino PJ; Copeland RA; Fraser ME; Grzyska PK; Hausinger RP
    Anal Biochem; 2006 Jun; 353(1):69-74. PubMed ID: 16643838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the 2-oxoglutarate-dependent dioxygenases and implications for cancer.
    Vissers MC; Kuiper C; Dachs GU
    Biochem Soc Trans; 2014 Aug; 42(4):945-51. PubMed ID: 25109984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-oxoglutarate-dependent dioxygenases: A renaissance in attention for ascorbic acid in plants.
    Mahmood AM; Dunwell JM
    PLoS One; 2020; 15(12):e0242833. PubMed ID: 33290424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase.
    Lukacin R; Britsch L
    Eur J Biochem; 1997 Nov; 249(3):748-57. PubMed ID: 9395322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic and magnetic studies of wild-type and mutant forms of the Fe(II)- and 2-oxoglutarate-dependent decarboxylase ALKBH4.
    Bjørnstad LG; Zoppellaro G; Tomter AB; Falnes PØ; Andersson KK
    Biochem J; 2011 Mar; 434(3):391-8. PubMed ID: 21166655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schizosaccharomyces pombe Ofd2 is a nuclear 2-oxoglutarate and iron dependent dioxygenase interacting with histones.
    Korvald H; Mølstad Moe AM; Cederkvist FH; Thiede B; Laerdahl JK; Bjørås M; Alseth I
    PLoS One; 2011; 6(9):e25188. PubMed ID: 21949882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and Computational Bases for Dramatic Skeletal Rearrangement in Anditomin Biosynthesis.
    Nakashima Y; Mitsuhashi T; Matsuda Y; Senda M; Sato H; Yamazaki M; Uchiyama M; Senda T; Abe I
    J Am Chem Soc; 2018 Aug; 140(30):9743-9750. PubMed ID: 29972643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prokaryotic caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity.
    Asplund-Samuelsson J; Bergman B; Larsson J
    PLoS One; 2012; 7(11):e49888. PubMed ID: 23185476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 2-oxoglutarate-dependent dioxygenase superfamily participates in tanshinone production in Salvia miltiorrhiza.
    Xu Z; Song J
    J Exp Bot; 2017 Apr; 68(9):2299-2308. PubMed ID: 28398557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early evolution of the biotin-dependent carboxylase family.
    Lombard J; Moreira D
    BMC Evol Biol; 2011 Aug; 11():232. PubMed ID: 21827699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration of specific amino acids at the catalytic/active centers of highly-conserved "housekeeping" enzymes of central metabolism in archaea, bacteria and Eukaryota: is there a widely conserved chemical signal of prebiotic assembly?
    Pollack JD; Pan X; Pearl DK
    Orig Life Evol Biosph; 2010 Jun; 40(3):273-302. PubMed ID: 20069373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase.
    Matera I; Ferraroni M; Bürger S; Scozzafava A; Stolz A; Briganti F
    J Mol Biol; 2008 Jul; 380(5):856-68. PubMed ID: 18572191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.