BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22863399)

  • 1. Biofeedback improves postural control recovery from multi-axis discrete perturbations.
    Sienko KH; Balkwill MD; Wall C
    J Neuroeng Rehabil; 2012 Aug; 9():53. PubMed ID: 22863399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of multi-directional vibrotactile feedback on vestibular-deficient postural performance during continuous multi-directional support surface perturbations.
    Sienko KH; Balkwill MD; Oddsson LI; Wall C
    J Vestib Res; 2008; 18(5-6):273-85. PubMed ID: 19542601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of vibrotactile feedback on postural stability during pseudorandom multidirectional platform motion.
    Sienko KH; Vichare VV; Balkwill MD; Wall C
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):944-52. PubMed ID: 19932987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mathematical model for incorporating biofeedback into human postural control.
    Ersal T; Sienko KH
    J Neuroeng Rehabil; 2013 Feb; 10():14. PubMed ID: 23374173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits.
    Wall C; Kentala E
    J Vestib Res; 2005; 15(5-6):313-25. PubMed ID: 16614476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of actuator selection on non-volitional postural responses to torso-based vibrotactile stimulation.
    Lee BC; Martin BJ; Sienko KH
    J Neuroeng Rehabil; 2013 Feb; 10():21. PubMed ID: 23406013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the effect of vibrotactile feedback during continuous multidirectional platform motion: a frequency domain approach.
    Vichare VV; Wall C; Balkwill MD; Sienko MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6910-3. PubMed ID: 19964454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell phone based balance trainer.
    Lee BC; Kim J; Chen S; Sienko KH
    J Neuroeng Rehabil; 2012 Feb; 9():10. PubMed ID: 22316167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directional postural responses induced by vibrotactile stimulations applied to the torso.
    Lee BC; Martin BJ; Sienko KH
    Exp Brain Res; 2012 Oct; 222(4):471-82. PubMed ID: 22968737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of vibrotactile biofeedback of trunk sway on balance control in multiple sclerosis.
    van der Logt RP; Findling O; Rust H; Yaldizli O; Allum JH
    Mult Scler Relat Disord; 2016 Jul; 8():58-63. PubMed ID: 27456875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the preferred modality for real-time biofeedback during balance training.
    Bechly KE; Carender WJ; Myles JD; Sienko KH
    Gait Posture; 2013 Mar; 37(3):391-6. PubMed ID: 23022157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of vibrotactile biofeedback training on trunk sway in Parkinson's disease patients.
    Nanhoe-Mahabier W; Allum JH; Pasman EP; Overeem S; Bloem BR
    Parkinsonism Relat Disord; 2012 Nov; 18(9):1017-21. PubMed ID: 22721975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of visual biofeedback and inherent stability on trunk postural control.
    Goodworth A; Kratzer A; Saavedra S
    Gait Posture; 2020 Jul; 80():308-314. PubMed ID: 32590252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt.
    Wall C; Weinberg MS; Schmidt PB; Krebs DE
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1153-61. PubMed ID: 11585039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of vibrotactile feedback on postural sway during locomotor activities.
    Sienko KH; Balkwill MD; Oddsson LI; Wall C
    J Neuroeng Rehabil; 2013 Aug; 10():93. PubMed ID: 23938136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept.
    Xu J; Bao T; Lee UH; Kinnaird C; Carender W; Huang Y; Sienko KH; Shull PB
    J Neuroeng Rehabil; 2017 Oct; 14(1):102. PubMed ID: 29020959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wearable vibrotactile biofeedback system improves balance control of healthy young adults following perturbations from quiet stance.
    Ma CZ; Lee WC
    Hum Mov Sci; 2017 Oct; 55():54-60. PubMed ID: 28763702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrotactile display coding for a balance prosthesis.
    Kadkade PP; Benda BJ; Schmidt PB; Wall C
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):392-9. PubMed ID: 14960115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of postural sway by use of a vibrotactile balance prosthesis prototype in subjects with vestibular deficits.
    Kentala E; Vivas J; Wall C
    Ann Otol Rhinol Laryngol; 2003 May; 112(5):404-9. PubMed ID: 12784977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The balance control of bilateral peripheral vestibular loss subjects and its improvement with auditory prosthetic feedback.
    Hegeman J; Honegger F; Kupper M; Allum JH
    J Vestib Res; 2005; 15(2):109-17. PubMed ID: 15951624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.