BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22863760)

  • 1. Actin fringe is correlated with tip growth velocity of pollen tubes.
    Dong H; Pei W; Haiyun R
    Mol Plant; 2012 Sep; 5(5):1160-2. PubMed ID: 22863760
    [No Abstract]   [Full Text] [Related]  

  • 2. FIMBRIN1 is involved in lily pollen tube growth by stabilizing the actin fringe.
    Su H; Zhu J; Cai C; Pei W; Wang J; Dong H; Ren H
    Plant Cell; 2012 Nov; 24(11):4539-54. PubMed ID: 23150633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LlFH1-mediated interaction between actin fringe and exocytic vesicles is involved in pollen tube tip growth.
    Li S; Dong H; Pei W; Liu C; Zhang S; Sun T; Xue X; Ren H
    New Phytol; 2017 Apr; 214(2):745-761. PubMed ID: 28092406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes.
    McKenna ST; Kunkel JG; Bosch M; Rounds CM; Vidali L; Winship LJ; Hepler PK
    Plant Cell; 2009 Oct; 21(10):3026-40. PubMed ID: 19861555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube.
    Rounds CM; Hepler PK; Winship LJ
    Plant Physiol; 2014 Sep; 166(1):139-51. PubMed ID: 25037212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular F-actin bundles and a G-actin gradient in pollen and pollen tubes of Lilium davidii.
    Li Y; Zee SY; Liu YM; Huang BQ; Yen LF
    Planta; 2001 Sep; 213(5):722-30. PubMed ID: 11678276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes.
    Wang HJ; Wan AR; Jauh GY
    Plant Physiol; 2008 Aug; 147(4):1619-36. PubMed ID: 18480376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pollen-specific SKP1-like proteins are components of functional scf complexes and essential for lily pollen tube elongation.
    Chang LC; Guo CL; Lin YS; Fu H; Wang CS; Jauh GY
    Plant Cell Physiol; 2009 Aug; 50(8):1558-72. PubMed ID: 19578169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ABP41 is involved in the pollen tube development via fragmenting actin filaments.
    Wang T; Xiang Y; Hou J; Ren HY
    Mol Plant; 2008 Nov; 1(6):1048-55. PubMed ID: 19825602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device.
    Hu C; Munglani G; Vogler H; Ndinyanka Fabrice T; Shamsudhin N; Wittel FK; Ringli C; Grossniklaus U; Herrmann HJ; Nelson BJ
    Lab Chip; 2016 Dec; 17(1):82-90. PubMed ID: 27883138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and exploration of pollen tube small proteins encoded by pollination-induced transcripts.
    Huang JC; Chang LC; Wang ML; Guo CL; Chung MC; Jauh GY
    Plant Cell Physiol; 2011 Sep; 52(9):1546-59. PubMed ID: 21771867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential organelle movement on the actin cytoskeleton in lily pollen tubes.
    Lovy-Wheeler A; Cárdenas L; Kunkel JG; Hepler PK
    Cell Motil Cytoskeleton; 2007 Mar; 64(3):217-32. PubMed ID: 17245769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The actin cytoskeleton and signaling network during pollen tube tip growth.
    Fu Y
    J Integr Plant Biol; 2010 Feb; 52(2):131-7. PubMed ID: 20377675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells.
    Vidali L; Rounds CM; Hepler PK; Bezanilla M
    PLoS One; 2009 May; 4(5):e5744. PubMed ID: 19478943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Durotropic Growth of Pollen Tubes.
    Reimann R; Kah D; Mark C; Dettmer J; Reimann TM; Gerum RC; Geitmann A; Fabry B; Dietrich P; Kost B
    Plant Physiol; 2020 Jun; 183(2):558-569. PubMed ID: 32241878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins.
    Cheung AY; Duan QH; Costa SS; de Graaf BH; Di Stilio VS; Feijo J; Wu HM
    Mol Plant; 2008 Jul; 1(4):686-702. PubMed ID: 19825573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes.
    Wang H; Jiang L
    Nat Protoc; 2011 Apr; 6(4):419-26. PubMed ID: 21412270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of galactolipid biosynthesis in development of pistils and pollen tubes.
    Nakamura Y; Kobayashi K; Ohta H
    Plant Physiol Biochem; 2009 Jun; 47(6):535-9. PubMed ID: 19181535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible protein tyrosine phosphorylation affects pollen germination and pollen tube growth via the actin cytoskeleton.
    Zi H; Xiang Y; Li M; Wang T; Ren H
    Protoplasma; 2007; 230(3-4):183-91. PubMed ID: 17458633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of F-actin fluorescent labeling methods in pollen tubes of Lilium davidii.
    Wang L; Liu YM; Li Y
    Plant Cell Rep; 2005 Jul; 24(5):266-70. PubMed ID: 16021524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.