BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 22863767)

  • 1. Identifying multi-layer gene regulatory modules from multi-dimensional genomic data.
    Li W; Zhang S; Liu CC; Zhou XJ
    Bioinformatics; 2012 Oct; 28(19):2458-66. PubMed ID: 22863767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules.
    Zhang S; Li Q; Liu J; Zhou XJ
    Bioinformatics; 2011 Jul; 27(13):i401-9. PubMed ID: 21685098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data.
    Zhang S; Liu CC; Li W; Shen H; Laird PW; Zhou XJ
    Nucleic Acids Res; 2012 Oct; 40(19):9379-91. PubMed ID: 22879375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer.
    Wrzeszczynski KO; Varadan V; Byrnes J; Lum E; Kamalakaran S; Levine DA; Dimitrova N; Zhang MQ; Lucito R
    PLoS One; 2011; 6(12):e28503. PubMed ID: 22174824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.
    Zhou Y; Liu Y; Li K; Zhang R; Qiu F; Zhao N; Xu Y
    PLoS One; 2015; 10(3):e0116095. PubMed ID: 25803614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data.
    Yang Z; Michailidis G
    Bioinformatics; 2016 Jan; 32(1):1-8. PubMed ID: 26377073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-view genomic data simulator.
    Fratello M; Serra A; Fortino V; Raiconi G; Tagliaferri R; Greco D
    BMC Bioinformatics; 2015 May; 16():151. PubMed ID: 25962835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach.
    Zhang D; Chen P; Zheng CH; Xia J
    Oncotarget; 2016 Jan; 7(4):4298-309. PubMed ID: 26735889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating multiple types of data to identify microRNA-gene co-modules.
    Zhang S
    Methods Mol Biol; 2013; 1049():215-29. PubMed ID: 23913219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DINGO: differential network analysis in genomics.
    Ha MJ; Baladandayuthapani V; Do KA
    Bioinformatics; 2015 Nov; 31(21):3413-20. PubMed ID: 26148744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MIRAGAA--a methodology for finding coordinated effects of microRNA expression changes and genome aberrations in cancer.
    Gaire RK; Bailey J; Bearfoot J; Campbell IG; Stuckey PJ; Haviv I
    Bioinformatics; 2010 Jan; 26(2):161-7. PubMed ID: 19933823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering key regulatory mechanisms from single-factor and multi-factor regulations in glioblastoma utilizing multi-dimensional data.
    Peng C; Shen Y; Ge M; Wang M; Li A
    Mol Biosyst; 2015 Aug; 11(8):2345-53. PubMed ID: 26091184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian joint analysis of heterogeneous genomics data.
    Ray P; Zheng L; Lucas J; Carin L
    Bioinformatics; 2014 May; 30(10):1370-6. PubMed ID: 24489367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrix factorization methods for integrative cancer genomics.
    Zhang S; Zhou XJ
    Methods Mol Biol; 2014; 1176():229-42. PubMed ID: 25030932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting tumor purity from methylation microarray data.
    Zhang N; Wu HJ; Zhang W; Wang J; Wu H; Zheng X
    Bioinformatics; 2015 Nov; 31(21):3401-5. PubMed ID: 26112293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors.
    Walter V; Du Y; Danilova L; Hayward MC; Hayes DN
    Cancer Res; 2018 Jun; 78(12):3375-3385. PubMed ID: 29700001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative impact of multi-layered genomic data on gene expression phenotypes in serous ovarian tumors.
    Sohn KA; Kim D; Lim J; Kim JH
    BMC Syst Biol; 2013 Dec; 7 Suppl 6(Suppl 6):S9. PubMed ID: 24521303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Method to Detect Functional microRNA Regulatory Modules by Bicliques Merging.
    Liang C; Li Y; Luo J
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(3):549-56. PubMed ID: 27295638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.