BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 2286419)

  • 21. Inhibition of positively rewarding behavior by the heightened aggressive state evoked either by pain-inducing stimulus or septal lesion.
    Kishore KR; Desiraju T
    Indian J Physiol Pharmacol; 1990 Apr; 34(2):125-9. PubMed ID: 2253981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of central gray matter lesions of the mesencephalon on switch-off and self stimulation responses in the hypothalamus].
    Schmitt P
    J Physiol (Paris); 1972; 65():Suppl 3:501A. PubMed ID: 4351279
    [No Abstract]   [Full Text] [Related]  

  • 23. Self-stimulation versus food reinforcement: comparative study of two different nervous structures, the lateral hypothalamus and the ventral tegmental area of the mesencephalon.
    Miliaressis E; Cardo B
    Brain Res; 1973 Jul; 57(1):75-83. PubMed ID: 4716761
    [No Abstract]   [Full Text] [Related]  

  • 24. Infusions of 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP) to the ventral tegmental area, but not the substantia nigra, enhance exploratory, anti-anxiety, social and sexual behaviours and concomitantly increase 3alpha,5alpha-THP concentrations in the hippocampus, diencephalon and cortex of ovariectomised oestrogen-primed rats.
    Frye CA; Rhodes ME
    J Neuroendocrinol; 2006 Dec; 18(12):960-75. PubMed ID: 17076771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Relationship between the frequency of self stimulation and the strength and duration of stimulation].
    Grigor'ian GA; Kulikov MA; Lazareva NA; Meshcherskiĭ RM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1978; 28(2):336-42. PubMed ID: 654574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurochemical characterization of the release and uptake of dopamine in ventral tegmental area and serotonin in substantia nigra of the mouse.
    John CE; Budygin EA; Mateo Y; Jones SR
    J Neurochem; 2006 Jan; 96(1):267-82. PubMed ID: 16300629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lateral hypothalamic self-stimulation pathways in Rattus norvegicus.
    Huang YH; Routtenberg A
    Physiol Behav; 1971 Sep; 7(3):419-32. PubMed ID: 4329576
    [No Abstract]   [Full Text] [Related]  

  • 28. [Self-stimulation characteristics and endogenous ethanol in rats of different sexes].
    Andronova LM; Kudriavtsev RV; Konstantinopol'skiĭ MA; Stanishevskaia AV
    Biull Eksp Biol Med; 1984 Jun; 97(6):688-90. PubMed ID: 6540124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The role of biological needs in the genesis of self stimulation].
    Grigor'ian GA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1975; 25(5):987-94. PubMed ID: 1210764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of influence of diazepam, valproate, cyproheptadine and cortisol on the rewarding ventral tegmental self-stimulation behaviour.
    Ramana SV; Desiraju T
    Indian J Physiol Pharmacol; 1989; 33(3):179-85. PubMed ID: 2512254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat.
    Miller AD; Forster GL; Yeomans JS; Blaha CD
    Neuroscience; 2005; 136(2):531-8. PubMed ID: 16216430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimum parameters for substantia nigra self-stimulation as reflected by peripheral autonomic responses.
    Angyán L
    Acta Physiol Acad Sci Hung; 1978; 51(3):265-81. PubMed ID: 755343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential expression of the homeobox gene Pitx3 in midbrain dopaminergic neurons.
    Korotkova TM; Ponomarenko AA; Haas HL; Sergeeva OA
    Eur J Neurosci; 2005 Sep; 22(6):1287-93. PubMed ID: 16190884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: a moveable electrode mapping study.
    Corbett D; Wise RA
    Brain Res; 1980 Mar; 185(1):1-15. PubMed ID: 7353169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alterations in the density of excrescences in CA3 neurons of hippocampus in rats subjected to self-stimulation experience.
    Shankaranarayana Rao BS; Raju TR; Meti BL
    Brain Res; 1998 Sep; 804(2):320-4. PubMed ID: 9757075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Avoidance mechanisms during self stimulation].
    Grigor'ian GA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1976; 26(6):1180-6. PubMed ID: 1014890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-stimulation in rats: tip alignment influences the effectiveness of bipolar electrodes.
    Szabó I; Milner PM
    Brain Res; 1972 Dec; 48():243-50. PubMed ID: 4645207
    [No Abstract]   [Full Text] [Related]  

  • 38. Intracranial self-stimulation site specificity: the myth of current spread.
    Steiner SS; Bodnar RJ; Nelson WT; Ackermann RF; Ellmann SJ
    Brain Res Bull; 1978; 3(4):349-56. PubMed ID: 318204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A within-subject comparison of the effects of morphine on lateral hypothalamic and central gray self-stimulation.
    Schenk S; Coupal A; Williams T; Shizgal P
    Pharmacol Biochem Behav; 1981 Jul; 15(1):37-41. PubMed ID: 7291228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Object-carrying by rats: disruption by ventral mesencephalic lesions.
    Phillips AG
    Can J Psychol; 1975 Sep; 29(3):250-62. PubMed ID: 1175097
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.