These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22864233)

  • 1. Microplate well coverage mixing using superhydrophobic contact.
    Vuong T; Cheong BH; Lye JK; Liew OW; Ng TW
    Anal Biochem; 2012 Nov; 430(1):53-5. PubMed ID: 22864233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A capacity for mixing in capillary wells for microplates.
    Lye JK; Ng TW; Neild A; Liew OW
    Anal Biochem; 2011 Mar; 410(1):152-4. PubMed ID: 21078285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-scribed transparency-based microplates.
    Li XY; Cheong BH; Somers A; Liew OW; Ng TW
    Langmuir; 2013 Jan; 29(2):849-55. PubMed ID: 23215012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires.
    Seo J; Lee S; Lee J; Lee T
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4722-9. PubMed ID: 22091585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces.
    Lai YH; Yang JT; Shieh DB
    Lab Chip; 2010 Feb; 10(4):499-504. PubMed ID: 20126691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid formation of superhydrophobic surfaces with fast response wettability transition.
    Zhu X; Zhang Z; Men X; Yang J; Xu X
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3636-41. PubMed ID: 21073178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wettability control of ZnO nanoparticles for universal applications.
    Lee M; Kwak G; Yong K
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces.
    Chang JH; Hunter IW
    Macromol Rapid Commun; 2011 May; 32(9-10):718-23. PubMed ID: 21544891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrowetting-induced dewetting transitions on superhydrophobic surfaces.
    Kumari N; Garimella SV
    Langmuir; 2011 Sep; 27(17):10342-6. PubMed ID: 21770408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable fabrication of superhydrophobic hierarchical colloidal arrays.
    Yang H; Jiang P
    J Colloid Interface Sci; 2010 Dec; 352(2):558-65. PubMed ID: 20850756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures.
    Basu BJ; Manasa J
    J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications for Open Source Microplate-Compatible Illumination Panels.
    Baillargeon P; Spicer TP; Scampavia L
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31633701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superhydrophobic fiber mats by electrodeposition of fluorinated poly(3,4-ethyleneoxythiathiophene).
    Darmanin T; Guittard F
    J Am Chem Soc; 2011 Oct; 133(39):15627-34. PubMed ID: 21870812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation.
    Kobayashi T; Shimizu K; Kaizuma Y; Konishi S
    Lab Chip; 2011 Feb; 11(4):639-44. PubMed ID: 21127789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable wettability and rewritable wettability gradient from superhydrophilicity to superhydrophobicity.
    Wang L; Peng B; Su Z
    Langmuir; 2010 Jul; 26(14):12203-8. PubMed ID: 20415506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparency microplates under impact.
    Lau CY; Roslan Z; Cheong BH; Chua WS; Liew OW; Ng TW
    J Colloid Interface Sci; 2014 Jul; 426():56-63. PubMed ID: 24863765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rewritable superhydrophilic-superhydrophobic patterns on a sintered titanium dioxide substrate.
    Nakata K; Nishimoto S; Yuda Y; Ochiai T; Murakami T; Fujishima A
    Langmuir; 2010 Jul; 26(14):11628-30. PubMed ID: 20552954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.