These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22864365)

  • 1. Elastomer based tunable optofluidic devices.
    Song W; Vasdekis AE; Psaltis D
    Lab Chip; 2012 Oct; 12(19):3590-7. PubMed ID: 22864365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows.
    Cuennet JG; Vasdekis AE; Psaltis D
    Lab Chip; 2013 Jul; 13(14):2721-6. PubMed ID: 23752198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic devices and applications in photonics, sensing and imaging.
    Pang L; Chen HM; Freeman LM; Fainman Y
    Lab Chip; 2012 Oct; 12(19):3543-51. PubMed ID: 22810383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic variable-focus lenses for light manipulation.
    Seow YC; Lim SP; Lee HP
    Lab Chip; 2012 Oct; 12(19):3810-5. PubMed ID: 22885654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit.
    Song W; Psaltis D
    Lab Chip; 2011 Jul; 11(14):2397-402. PubMed ID: 21617797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration.
    Song C; Nguyen NT; Asundi AK; Tan SH
    Opt Lett; 2010 Feb; 35(3):327-9. PubMed ID: 20125710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable solid-body elastomer lenses with electromagnetic actuation.
    Liebetraut P; Petsch S; Mönch W; Zappe H
    Appl Opt; 2011 Jul; 50(19):3268-74. PubMed ID: 21743528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optofluidic prism tuned by two laminar flows.
    Xiong S; Liu AQ; Chin LK; Yang Y
    Lab Chip; 2011 Jun; 11(11):1864-9. PubMed ID: 21448472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-core optofluidic chip for independent particle detection and tunable spectral filtering.
    Ozcelik D; Phillips BS; Parks JW; Measor P; Gulbransen D; Hawkins AR; Schmidt H
    Lab Chip; 2012 Oct; 12(19):3728-33. PubMed ID: 22864667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity.
    Gong Y; Zhang C; Liu QF; Wu Y; Wu H; Rao Y; Peng GD
    Opt Express; 2015 Feb; 23(3):3762-9. PubMed ID: 25836228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Optical Vortex from a Nanogroove-Structured Optofluidic Microlaser.
    Qiao Z; Gong C; Liao Y; Wang C; Chan KK; Zhu S; Kim M; Chen YC
    Nano Lett; 2022 Feb; 22(3):1425-1432. PubMed ID: 34817181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic router based on tunable liquid-liquid mirrors.
    Müller P; Kopp D; Llobera A; Zappe H
    Lab Chip; 2014 Feb; 14(4):737-43. PubMed ID: 24287814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic control using photothermal nanoparticles.
    Liu GL; Kim J; Lu Y; Lee LP
    Nat Mater; 2006 Jan; 5(1):27-32. PubMed ID: 16362056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-step replication of a highly integrated PDMS optofluidic analysis system.
    Amberg M; Stoebenau S; Sinzinger S
    Appl Opt; 2010 Aug; 49(22):4326-30. PubMed ID: 20676190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.
    Chin LK; Liu AQ; Soh YC; Lim CS; Lin CL
    Lab Chip; 2010 Apr; 10(8):1072-8. PubMed ID: 20358116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review.
    Alvankarian J; Majlis BY
    Sensors (Basel); 2015 Nov; 15(11):29685-701. PubMed ID: 26610519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation, fabrication, and characterization of a tunable electrowetting-based lens with a wedge-shaped PDMS dielectric layer.
    Moghaddam MS; Latifi H; Shahraki H; Cheri MS
    Appl Opt; 2015 Apr; 54(10):3010-7. PubMed ID: 25967216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Fabrication of a Tunable Optofluidic Microlens Driven by an Encircled Thermo-Pneumatic Actuator.
    Zhang W; Li H; Zou Y; Zhao P; Li Z
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Developments in Optofluidic Lens Technology.
    Mishra K; van den Ende D; Mugele F
    Micromachines (Basel); 2016 Jun; 7(6):. PubMed ID: 30404276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation optofluidics for large-angle light bending and tuning.
    Yang Y; Chin LK; Tsai JM; Tsai DP; Zheludev NI; Liu AQ
    Lab Chip; 2012 Oct; 12(19):3785-90. PubMed ID: 22868356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.