BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22864462)

  • 1. A pH-responsive fluorescent probe and photosensitiser based on a self-quenched phthalocyanine dimer.
    Ke MR; Ng DK; Lo PC
    Chem Commun (Camb); 2012 Sep; 48(72):9065-7. PubMed ID: 22864462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pH-responsive fluorescence probe and photosensitiser based on a tetraamino silicon(IV) phthalocyanine.
    Jiang XJ; Lo PC; Yeung SL; Fong WP; Ng DK
    Chem Commun (Camb); 2010 May; 46(18):3188-90. PubMed ID: 20424769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An acid-cleavable phthalocyanine tetramer as an activatable photosensitiser for photodynamic therapy.
    Chow SY; Lo PC; Ng DK
    Dalton Trans; 2016 Aug; 45(33):13021-4. PubMed ID: 27396392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cell-selective glutathione-responsive tris(phthalocyanine) as a smart photosensitiser for targeted photodynamic therapy.
    Chow SYS; Zhao S; Lo PC; Ng DKP
    Dalton Trans; 2017 Aug; 46(34):11223-11229. PubMed ID: 28795744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of cathepsin B-responsive fluorescent probe and photosensitizer using a ferrocenyl boron dipyrromethene dark quencher.
    Wang Q; Yu L; Wong RCH; Lo PC
    Eur J Med Chem; 2019 Oct; 179():828-836. PubMed ID: 31295715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phthalocyanine-polyamine conjugates as pH-controlled photosensitizers for photodynamic therapy.
    Jiang XJ; Lo PC; Tsang YM; Yeung SL; Fong WP; Ng DK
    Chemistry; 2010 Apr; 16(16):4777-83. PubMed ID: 20309976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disulfide-Linked Dendritic Oligomeric Phthalocyanines as Glutathione-Responsive Photosensitizers for Photodynamic Therapy.
    Chow SYS; Wong RCH; Zhao S; Lo PC; Ng DKP
    Chemistry; 2018 Apr; 24(22):5779-5789. PubMed ID: 29356199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A disulfide-linked conjugate of ferrocenyl chalcone and silicon(IV) phthalocyanine as an activatable photosensitiser.
    Lau JT; Jiang XJ; Ng DK; Lo PC
    Chem Commun (Camb); 2013 May; 49(39):4274-6. PubMed ID: 23135340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic binding of substituted metal phthalocyanines to enterobacterial cells: its role in photodynamic inactivation.
    Strakhovskaya MG; Antonenko YN; Pashkovskaya AA; Kotova EA; Kireev V; Zhukhovitsky VG; Kuznetsova NA; Yuzhakova OA; Negrimovsky VM; Rubin AB
    Biochemistry (Mosc); 2009 Dec; 74(12):1305-14. PubMed ID: 19961410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photophysical properties and photodynamic therapy activities of detonated nanodiamonds-BODIPY-phthalocyanines nanoassemblies.
    Matshitse R; Ngoy BP; Managa M; Mack J; Nyokong T
    Photodiagnosis Photodyn Ther; 2019 Jun; 26():101-110. PubMed ID: 30851436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy.
    Wong RCH; Chow SYS; Zhao S; Fong WP; Ng DKP; Lo PC
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23487-23496. PubMed ID: 28661122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilising an acid-cleavable dimeric phthalocyanine on gold nanobipyramids for intracellular pH detection and photodynamic elimination of cancer cells.
    Cao Y; Wong RCH; Xue EY; Zhang H; Wang J; Ding Y; Zhang L; Chen F; Wang J; Ng DKP
    Analyst; 2024 Jun; 149(12):3288-3292. PubMed ID: 38808583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual activatable photosensitizer toward targeted photodynamic therapy.
    Lau JT; Lo PC; Jiang XJ; Wang Q; Ng DK
    J Med Chem; 2014 May; 57(10):4088-97. PubMed ID: 24793456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A zinc(II) phthalocyanine conjugated with an oxaliplatin derivative for dual chemo- and photodynamic therapy.
    Lau JT; Lo PC; Fong WP; Ng DK
    J Med Chem; 2012 Jun; 55(11):5446-54. PubMed ID: 22646131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and comparative photodynamic properties of two isosteric alkyl substituted zinc(II) phthalocyanines.
    Gauna GA; Marino J; García Vior MC; Roguin LP; Awruch J
    Eur J Med Chem; 2011 Nov; 46(11):5532-9. PubMed ID: 21955680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodynamic modification of disulfonated aluminium phthalocyanine fluorescence in a macrophage cell line.
    Kunz L; Connelly JP; Woodhams JH; MacRobert AJ
    Photochem Photobiol Sci; 2007 Sep; 6(9):940-8. PubMed ID: 17721592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phthalocyanine-peptide conjugate with high in vitro photodynamic activity and enhanced in vivo tumor-retention property.
    Ke MR; Yeung SL; Fong WP; Ng DK; Lo PC
    Chemistry; 2012 Apr; 18(14):4225-33. PubMed ID: 22378352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and in vitro photodynamic activities of di-alpha-substituted zinc(ii) phthalocyanine derivatives.
    Liu JY; Lo PC; Jiang XJ; Fong WP; Ng DK
    Dalton Trans; 2009 Jun; (21):4129-35. PubMed ID: 19452061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cyclodextrin dimer with a photocleavable linker as a possible carrier for the photosensitizer in photodynamic tumor therapy.
    Ruebner A; Yang Z; Leung D; Breslow R
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14692-3. PubMed ID: 10611274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosensitizing properties of a boronated phthalocyanine: studies at the molecular and cellular level.
    Fabris C; Jori G; Giuntini F; Roncucci G
    J Photochem Photobiol B; 2001 Nov; 64(1):1-7. PubMed ID: 11705724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.