These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 22864577)

  • 21. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.
    Chen JZ; Darhuber AA; Troian SM; Wagner S
    Lab Chip; 2004 Oct; 4(5):473-80. PubMed ID: 15472731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids.
    Verma MK; Ganneboyina SR; R VR; Ghatak A
    Langmuir; 2008 Mar; 24(5):2248-51. PubMed ID: 18197716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogel-based reconfigurable components for microfluidic devices.
    Kim D; Beebe DJ
    Lab Chip; 2007 Feb; 7(2):193-8. PubMed ID: 17268621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ionic-surfactant-mediated electro-dewetting for digital microfluidics.
    Li J; Ha NS; Liu T'; van Dam RM; 'cj' Kim CJ
    Nature; 2019 Aug; 572(7770):507-510. PubMed ID: 31435058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular and colloidal separation using optical forces.
    Dholakia K; MacDonald MP; Zemánek P; Cizmár T
    Methods Cell Biol; 2007; 82():467-95. PubMed ID: 17586269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A study of mixing in thermocapillary flows on micropatterned surfaces.
    Darhuber AA; Chen JZ; Davis JM; Troian SM
    Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):1037-58. PubMed ID: 15306483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Innovations in exploiting photo-controlled Marangoni flows for soft matter actuations.
    Farzeena C; Vinay TV; Lekshmi BS; Ragisha CM; Varanakkottu SN
    Soft Matter; 2023 Jul; 19(28):5223-5243. PubMed ID: 37357607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices.
    Yamada M; Seki M
    Anal Chem; 2004 Feb; 76(4):895-9. PubMed ID: 14961718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Principles of droplet electrohydrodynamics for lab-on-a-chip.
    Zeng J; Korsmeyer T
    Lab Chip; 2004 Aug; 4(4):265-77. PubMed ID: 15269791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic: an innovative tool for efficient cell sorting.
    Autebert J; Coudert B; Bidard FC; Pierga JY; Descroix S; Malaquin L; Viovy JL
    Methods; 2012 Jul; 57(3):297-307. PubMed ID: 22796377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability.
    Fang G; Li W; Wang X; Qiao G
    Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows.
    Lettieri GL; Dodge A; Boer G; de Rooij NF; Verpoorte E
    Lab Chip; 2003 Feb; 3(1):34-9. PubMed ID: 15100803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidics for miniaturized laboratories on a chip.
    Franke TA; Wixforth A
    Chemphyschem; 2008 Oct; 9(15):2140-56. PubMed ID: 18932153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Droplet microfluidics.
    Teh SY; Lin R; Hung LH; Lee AP
    Lab Chip; 2008 Feb; 8(2):198-220. PubMed ID: 18231657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remotely powered self-propelling particles and micropumps based on miniature diodes.
    Chang ST; Paunov VN; Petsev DN; Velev OD
    Nat Mater; 2007 Mar; 6(3):235-40. PubMed ID: 17293850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones.
    Dorvee JR; Derfus AM; Bhatia SN; Sailor MJ
    Nat Mater; 2004 Dec; 3(12):896-9. PubMed ID: 15531887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.
    Ng WY; Goh S; Lam YC; Yang C; Rodríguez I
    Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible switching of high-speed air-liquid two-phase flows using electrowetting-assisted flow-pattern change.
    Huh D; Tkaczyk AH; Bahng JH; Chang Y; Wei HH; Grotberg JB; Kim CJ; Kurabayashi K; Takayama S
    J Am Chem Soc; 2003 Dec; 125(48):14678-9. PubMed ID: 14640622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.