These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 22864939)

  • 1. Fabrication of a multifunctional carbon nanotube "cotton" yarn by the direct chemical vapor deposition spinning process.
    Zhong XH; Li YL; Feng JM; Kang YR; Han SS
    Nanoscale; 2012 Sep; 4(18):5614-8. PubMed ID: 22864939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor.
    Zhu Z; Song W; Burugapalli K; Moussy F; Li YL; Zhong XH
    Nanotechnology; 2010 Apr; 21(16):165501. PubMed ID: 20348597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube and graphene multiple-thread yarns.
    Zhong X; Wang R; Yangyang W; Yali L
    Nanoscale; 2013 Feb; 5(3):1183-7. PubMed ID: 23299393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly twisted double-helix carbon nanotube yarns.
    Shang Y; Li Y; He X; Du S; Zhang L; Shi E; Wu S; Li Z; Li P; Wei J; Wang K; Zhu H; Wu D; Cao A
    ACS Nano; 2013 Feb; 7(2):1446-53. PubMed ID: 23289799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing polymer/carbon nanotube composite using a novel direct process.
    Tran CD; Lucas S; Phillips DG; Randeniya LK; Baughman RH; Tran-Cong T
    Nanotechnology; 2011 Apr; 22(14):145302. PubMed ID: 21346301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic carbon nanotube straight yarns embedded with helical loops.
    Shang Y; Li Y; He X; Zhang L; Li Z; Li P; Shi E; Wu S; Cao A
    Nanoscale; 2013 Mar; 5(6):2403-10. PubMed ID: 23400109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.
    Liu K; Sun Y; Lin X; Zhou R; Wang J; Fan S; Jiang K
    ACS Nano; 2010 Oct; 4(10):5827-34. PubMed ID: 20831235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships.
    Beese AM; Wei X; Sarkar S; Ramachandramoorthy R; Roenbeck MR; Moravsky A; Ford M; Yavari F; Keane DT; Loutfy RO; Nguyen ST; Espinosa HD
    ACS Nano; 2014 Nov; 8(11):11454-66. PubMed ID: 25353651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ observation of carbon nanotube yarn during voltage application.
    Tokunaga T; Hayashi Y; Iijima T; Uesugi Y; Unten M; Sasaki K; Yamamoto T
    Micron; 2015 Jul; 74():30-4. PubMed ID: 25939086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration.
    Lee J; Kim T; Jung Y; Jung K; Park J; Lee DM; Jeong HS; Hwang JY; Park CR; Lee KH; Kim SM
    Nanoscale; 2016 Dec; 8(45):18972-18979. PubMed ID: 27808334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning.
    Ryu SW; Hwang JW; Hong SH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5653-7. PubMed ID: 22966627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method.
    Liu K; Sun Y; Zhou R; Zhu H; Wang J; Liu L; Fan S; Jiang K
    Nanotechnology; 2010 Jan; 21(4):045708. PubMed ID: 20009208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical multifunctional composites by conformally coating aligned carbon nanotube arrays with conducting polymer.
    Vaddiraju S; Cebeci H; Gleason KK; Wardle BL
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2565-72. PubMed ID: 20356128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process Optimization for Manufacturing PAN-Based Conductive Yarn with Carbon Nanomaterials through Wet Spinning.
    Kim H; Moon H; Lim D; Jeong W
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns.
    Probst H; Katzer K; Nocke A; Hickmann R; Zimmermann M; Cherif C
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional and Washable Carbon Nanotube-Wrapped Textile Yarns for Wearable E-Textiles.
    Hossain MM; Lubna MM; Bradford PD
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3365-3376. PubMed ID: 36622361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion Beam Modification of Carbon Nanotube Yarn in Air and Vacuum.
    Gigax JG; Bradford PD; Shao L
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics.
    Zhu L; Hess DW; Wong CP
    J Phys Chem B; 2006 Mar; 110(11):5445-9. PubMed ID: 16539482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.