BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22865059)

  • 1. Structure-based engineering of methionine residues in the catalytic cores of alkaline amylase from Alkalimonas amylolytica for improved oxidative stability.
    Yang H; Liu L; Wang M; Li J; Wang NS; Du G; Chen J
    Appl Environ Microbiol; 2012 Nov; 78(21):7519-26. PubMed ID: 22865059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-guided systems-level engineering of oxidation-prone methionine residues in catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica for significant improvement of both oxidative stability and catalytic efficiency.
    Yang H; Liu L; Shin HD; Li J; Du G; Chen J
    PLoS One; 2013; 8(3):e57403. PubMed ID: 23554859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based replacement of methionine residues at the catalytic domains with serine significantly improves the oxidative stability of alkaline amylase from alkaliphilic Alkalimonas amylolytica.
    Yang H; Liu L; Li J; Du G; Chen J
    Biotechnol Prog; 2012; 28(5):1271-7. PubMed ID: 22887900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion of an oligopeptide to the N terminus of an alkaline α-amylase from Alkalimonas amylolytica simultaneously improves the enzyme's catalytic efficiency, thermal stability, and resistance to oxidation.
    Yang H; Lu X; Liu L; Li J; Shin HD; Chen RR; Du G; Chen J
    Appl Environ Microbiol; 2013 May; 79(9):3049-58. PubMed ID: 23455344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico rational design and systems engineering of disulfide bridges in the catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica to improve thermostability.
    Liu L; Deng Z; Yang H; Li J; Shin HD; Chen RR; Du G; Chen J
    Appl Environ Microbiol; 2014 Feb; 80(3):798-807. PubMed ID: 24212581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability.
    Deng Z; Yang H; Li J; Shin HD; Du G; Liu L; Chen J
    Appl Microbiol Biotechnol; 2014 May; 98(9):3997-4007. PubMed ID: 24247992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability.
    Deng Z; Yang H; Shin HD; Li J; Liu L
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):8937-45. PubMed ID: 24816623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of heterologous expression, biochemical characterization optimal production of an alkaline α-amylase from alkaliphilic Alkalimonas amylolytica in Escherichia coli and Pichia pastoris.
    Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    Biotechnol Prog; 2013; 29(1):39-47. PubMed ID: 23125186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions.
    Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    J Biotechnol; 2013 Mar; 164(1):59-66. PubMed ID: 23262127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.
    Yang G; Yao H; Mozzicafreddo M; Ballarini P; Pucciarelli S; Miceli C
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene cloning and characterization of a novel alpha-amylase from alkaliphilic Alkalimonas amylolytica.
    Wang N; Zhang Y; Wang Q; Liu J; Wang H; Xue Y; Ma Y
    Biotechnol J; 2006 Nov; 1(11):1258-65. PubMed ID: 17068753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of hydrogen peroxide stability of Pleurotus eryngii versatile ligninolytic peroxidase by rational protein engineering.
    Bao X; Huang X; Lu X; Li JJ
    Enzyme Microb Technol; 2014 Jan; 54():51-8. PubMed ID: 24267568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacement of methionine 208 in a truncated Bacillus sp. TS-23 alpha-amylase with oxidation-resistant leucine enhances its resistance to hydrogen peroxide.
    Lin LL; Lo HF; Chiang WY; Hu HY; Hsu WH; Chang CT
    Curr Microbiol; 2003 Mar; 46(3):211-6. PubMed ID: 12567245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved catalytic properties of a serine hydroxymethyl transferase from Idiomarina loihiensis by site directed mutagenesis.
    Kumar A; Wu G; Wu Z; Kumar N; Liu Z
    Int J Biol Macromol; 2018 Oct; 117():1216-1223. PubMed ID: 29727646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.
    Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R
    Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of a glutamate dehydrogenase into methionine/norleucine dehydrogenase by site-directed mutagenesis.
    Wang XG; Britton KL; Stillman TJ; Rice DW; Engel PC
    Eur J Biochem; 2001 Nov; 268(22):5791-9. PubMed ID: 11722565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of a thermostable alpha-amylase from Bacillus stearothermophilus: putative role of three conserved residues.
    Vihinen M; Ollikka P; Niskanen J; Meyer P; Suominen I; Karp M; Holm L; Knowles J; Mäntsälä P
    J Biochem; 1990 Feb; 107(2):267-72. PubMed ID: 1694530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline α-amylase Amy703.
    Lu Z; Wang Q; Jiang S; Zhang G; Ma Y
    Sci Rep; 2016 Mar; 6():22465. PubMed ID: 26926401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the thermostability of raw-starch-digesting amylase from a Cytophaga sp. by site-directed mutagenesis.
    Shiau RJ; Hung HC; Jeang CL
    Appl Environ Microbiol; 2003 Apr; 69(4):2383-5. PubMed ID: 12676725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of an Alkaline Pectate Lyase and Rational Engineering with Improved Thermo-Alkaline Stability for Efficient Ramie Degumming.
    Zhou C; Cao Y; Xue Y; Liu W; Ju J; Ma Y
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.