These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
729 related articles for article (PubMed ID: 22865445)
21. Effect of Ficus racemosa stem bark on the activities of carbohydrate hydrolyzing enzymes: an in vitro study. Ahmed F; Urooj A Pharm Biol; 2010 May; 48(5):518-23. PubMed ID: 20645793 [TBL] [Abstract][Full Text] [Related]
22. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water-extractable phytochemicals from unripe pawpaw fruit (Carica papaya). Oboh G; Olabiyi AA; Akinyemi AJ; Ademiluyi AO J Basic Clin Physiol Pharmacol; 2014 Feb; 25(1):21-34. PubMed ID: 23740684 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Kwon YI; Jang HD; Shetty K Asia Pac J Clin Nutr; 2006; 15(3):425-32. PubMed ID: 16837437 [TBL] [Abstract][Full Text] [Related]
24. Alpha-glucosidase inhibitory activity and lipid-lowering mechanisms of Moringa oleifera leaf extract. Adisakwattana S; Chanathong B Eur Rev Med Pharmacol Sci; 2011 Jul; 15(7):803-8. PubMed ID: 21780550 [TBL] [Abstract][Full Text] [Related]
25. Different polyphenolic components of soft fruits inhibit alpha-amylase and alpha-glucosidase. McDougall GJ; Shpiro F; Dobson P; Smith P; Blake A; Stewart D J Agric Food Chem; 2005 Apr; 53(7):2760-6. PubMed ID: 15796622 [TBL] [Abstract][Full Text] [Related]
26. In vitro inhibitory activities of plants used in Lebanon traditional medicine against angiotensin converting enzyme (ACE) and digestive enzymes related to diabetes. Loizzo MR; Saab AM; Tundis R; Menichini F; Bonesi M; Piccolo V; Statti GA; de Cindio B; Houghton PJ; Menichini F J Ethnopharmacol; 2008 Sep; 119(1):109-16. PubMed ID: 18601990 [TBL] [Abstract][Full Text] [Related]
27. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Tan Y; Chang SKC; Zhang Y Food Chem; 2017 Jan; 214():259-268. PubMed ID: 27507474 [TBL] [Abstract][Full Text] [Related]
28. Profiles of free and bound phenolics extracted from Citrus fruits and their roles in biological systems: content, and antioxidant, anti-diabetic and anti-hypertensive properties. Alu'datt MH; Rababah T; Alhamad MN; Al-Mahasneh MA; Ereifej K; Al-Karaki G; Al-Duais M; Andrade JE; Tranchant CC; Kubow S; Ghozlan KA Food Funct; 2017 Sep; 8(9):3187-3197. PubMed ID: 28805834 [TBL] [Abstract][Full Text] [Related]
29. Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves. Toma A; Makonnen E; Mekonnen Y; Debella A; Addisakwattana S BMC Complement Altern Med; 2014 Jun; 14():180. PubMed ID: 24890563 [TBL] [Abstract][Full Text] [Related]
30. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. Oboh G; Agunloye OM; Adefegha SA; Akinyemi AJ; Ademiluyi AO J Basic Clin Physiol Pharmacol; 2015 Mar; 26(2):165-70. PubMed ID: 24825096 [TBL] [Abstract][Full Text] [Related]
31. Aqueous extracts of Roselle (Hibiscus sabdariffa Linn.) varieties inhibit α-amylase and α-glucosidase activities in vitro. Ademiluyi AO; Oboh G J Med Food; 2013 Jan; 16(1):88-93. PubMed ID: 23216107 [TBL] [Abstract][Full Text] [Related]
32. In vitro inhibitory potential of selected Malaysian plants against key enzymes involved in hyperglycemia and hypertension. Loh SP; Hadira O Malays J Nutr; 2011 Apr; 17(1):77-86. PubMed ID: 22135867 [TBL] [Abstract][Full Text] [Related]
33. Potential of Ginkgo biloba L. leaves in the management of hyperglycemia and hypertension using in vitro models. Pinto Mda S; Kwon YI; Apostolidis E; Lajolo FM; Genovese MI; Shetty K Bioresour Technol; 2009 Dec; 100(24):6599-609. PubMed ID: 19665890 [TBL] [Abstract][Full Text] [Related]
34. Alpha glucosidase inhibition by stem extract of Tinospora cordifolia. Chougale AD; Ghadyale VA; Panaskar SN; Arvindekar AU J Enzyme Inhib Med Chem; 2009 Aug; 24(4):998-1001. PubMed ID: 19555164 [TBL] [Abstract][Full Text] [Related]
35. Phytochemical screening of Nepeta cataria extracts and their in vitro inhibitory effects on free radicals and carbohydrate-metabolising enzymes. Naguib AM; Ebrahim ME; Aly HF; Metawaa HM; Mahmoud AH; Mahmoud EA; Ebrahim FM Nat Prod Res; 2012; 26(23):2196-8. PubMed ID: 22103287 [TBL] [Abstract][Full Text] [Related]
36. Inhibition of alpha-glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. seeds. Gowri PM; Tiwari AK; Ali AZ; Rao JM Phytother Res; 2007 Aug; 21(8):796-9. PubMed ID: 17533638 [TBL] [Abstract][Full Text] [Related]
37. Potential of cranberry-based herbal synergies for diabetes and hypertension management. Apostolidis E; Kwon YI; Shetty K Asia Pac J Clin Nutr; 2006; 15(3):433-41. PubMed ID: 16837438 [TBL] [Abstract][Full Text] [Related]
38. Molecular Weight Affected Antioxidant, Hypoglycemic and Hypotensive Activities of Cold Water Extract from Pleurotus citrinopileatus. Chen PH; Weng YM; Lin SM; Yu ZR; Wang BJ J Food Sci; 2017 Oct; 82(10):2456-2461. PubMed ID: 28850664 [TBL] [Abstract][Full Text] [Related]
39. Potentially antidiabetic and antihypertensive compounds identified from Pistacia atlantica leaf extracts by LC fingerprinting. Ahmed ZB; Yousfi M; Viaene J; Dejaegher B; Demeyer K; Mangelings D; Vander Heyden Y J Pharm Biomed Anal; 2018 Feb; 149():547-556. PubMed ID: 29190580 [TBL] [Abstract][Full Text] [Related]