BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22865570)

  • 1. Combined electrochemistry and surface-enhanced infrared absorption spectroscopy of gramicidin A incorporated into tethered bilayer lipid membranes.
    Kozuch J; Steinem C; Hildebrandt P; Millo D
    Angew Chem Int Ed Engl; 2012 Aug; 51(32):8114-7. PubMed ID: 22865570
    [No Abstract]   [Full Text] [Related]  

  • 2. Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au(111) surface.
    Laredo T; Dutcher JR; Lipkowski J
    Langmuir; 2011 Aug; 27(16):10072-87. PubMed ID: 21707110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bias-dependent admittance in hybrid bilayer membranes.
    Nikolov V; Radisic A; Hristova K; Searson PC
    Langmuir; 2006 Aug; 22(17):7156-8. PubMed ID: 16893210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of single ion channel activity on a chip using tethered bilayer membranes.
    Andersson M; Keizer HM; Zhu C; Fine D; Dodabalapur A; Duran RS
    Langmuir; 2007 Mar; 23(6):2924-7. PubMed ID: 17286424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gramicidin conducting dimers in lipid bilayers are stabilized by single-file ionic flux along them.
    Becucci L; Santucci A; Guidelli R
    J Phys Chem B; 2007 Aug; 111(33):9814-20. PubMed ID: 17672492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oriented attachment and membrane reconstitution of His-tagged cytochrome c oxidase to a gold electrode: in situ monitoring by surface-enhanced infrared absorption spectroscopy.
    Ataka K; Giess F; Knoll W; Naumann R; Haber-Pohlmeier S; Richter B; Heberle J
    J Am Chem Soc; 2004 Dec; 126(49):16199-206. PubMed ID: 15584756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential-driven structural changes in Langmuir-Blodgett DMPC bilayers determined by in situ spectroelectrochemical PM IRRAS.
    Zawisza I; Bin X; Lipkowski J
    Langmuir; 2007 Apr; 23(9):5180-94. PubMed ID: 17373832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tethered bilayer lipid membranes self-assembled on mercury electrodes.
    Moncelli MR; Becucci L; Schiller SM
    Bioelectrochemistry; 2004 Jun; 63(1-2):161-7. PubMed ID: 15110267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of an electric field on oriented films of DMPC/gramicidin bilayers: a circular dichroism study.
    Fiche JB; Laredo T; Tanchak O; Lipkowski J; Dutcher JR; Yada RY
    Langmuir; 2010 Jan; 26(2):1057-66. PubMed ID: 20067313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers.
    Lin JQ; Zheng YG; Zhang HW; Chen Z
    Langmuir; 2011 Jul; 27(13):8323-32. PubMed ID: 21634406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer.
    Ataka K; Heberle J
    Biopolymers; 2006 Jul; 82(4):415-9. PubMed ID: 16518850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the structure of cholesterol-based tethered bilayer lipid membranes on ionophore activity.
    Kendall JK; Johnson BR; Symonds PH; Imperato G; Bushby RJ; Gwyer JD; van Berkel C; Evans SD; Jeuken LJ
    Chemphyschem; 2010 Jul; 11(10):2191-8. PubMed ID: 20512836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulating tethered bilayer lipid membranes to study membrane proteins.
    Köper I
    Mol Biosyst; 2007 Oct; 3(10):651-7. PubMed ID: 17882328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-spectroscopic approach to investigate the interactions between Gramicidin A and silver nanoparticles.
    Gambucci M; Gentili PL; Sassi P; Latterini L
    Soft Matter; 2019 Aug; 15(32):6571-6580. PubMed ID: 31364666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deposition of metal nanoparticles on phospholipid multilayer membranes modified by gramicidin.
    Han WB; Kim Y; An HH; Kim HS; Yoon CS
    Langmuir; 2013 Oct; 29(43):13251-7. PubMed ID: 24079973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of high-resistance supported lipid bilayer on the surface of a silicon substrate with microelectrodes.
    Urisu T; Rahman MM; Uno H; Tero R; Nonogaki Y
    Nanomedicine; 2005 Dec; 1(4):317-22. PubMed ID: 17292105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of highly insulating tethered bilayer lipid membrane using yeast cell membrane fractions for measuring ion channel activity.
    Jadhav SR; Sui D; Garavito RM; Worden RM
    J Colloid Interface Sci; 2008 Jun; 322(2):465-72. PubMed ID: 18387623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and electrochemical behavior of gramicidin-bipolar lipid monolayer membranes supported on gold electrodes.
    Kim JM; Patwardhan A; Bott A; Thompson DH
    Biochim Biophys Acta; 2003 Oct; 1617(1-2):10-21. PubMed ID: 14637015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tethered Bilayer Lipid Membranes to Monitor Heat Transfer between Gold Nanoparticles and Lipid Membranes.
    Alghalayini A; Jiang L; Gu X; Yeoh GH; Cranfield CG; Timchenko V; Cornell BA; Valenzuela SM
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33369602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method to fabricate patterned bilayer lipid membranes.
    Han X; Critchley K; Zhang L; Pradeep SN; Bushby RJ; Evans SD
    Langmuir; 2007 Jan; 23(3):1354-8. PubMed ID: 17241058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.