These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 22865635)
1. Aquatic toxicity of nanosilver colloids to different trophic organisms: contributions of particles and free silver ion. Wang Z; Chen J; Li X; Shao J; Peijnenburg WJ Environ Toxicol Chem; 2012 Oct; 31(10):2408-13. PubMed ID: 22865635 [TBL] [Abstract][Full Text] [Related]
2. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Wang Z; Quik JT; Song L; Van Den Brandhof EJ; Wouterse M; Peijnenburg WJ Environ Toxicol Chem; 2015 Jun; 34(6):1239-45. PubMed ID: 25683234 [TBL] [Abstract][Full Text] [Related]
3. Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Kennedy AJ; Hull MS; Bednar AJ; Goss JD; Gunter JC; Bouldin JL; Vikesland PJ; Steevens JA Environ Sci Technol; 2010 Dec; 44(24):9571-7. PubMed ID: 21082828 [TBL] [Abstract][Full Text] [Related]
4. Effects of natural water chemistry on nanosilver behavior and toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata. McLaughlin J; Bonzongo JC Environ Toxicol Chem; 2012 Jan; 31(1):168-75. PubMed ID: 22020942 [TBL] [Abstract][Full Text] [Related]
5. Acute embryonic exposure to nanosilver or silver ion does not disrupt the stress response in zebrafish (Danio rerio) larvae and adults. Massarsky A; Strek L; Craig PM; Eisa-Beygi S; Trudeau VL; Moon TW Sci Total Environ; 2014 Apr; 478():133-40. PubMed ID: 24530593 [TBL] [Abstract][Full Text] [Related]
6. Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: The influence of silver behaviour in solution. Ribeiro F; Gallego-Urrea JA; Goodhead RM; Van Gestel CA; Moger J; Soares AM; Loureiro S Nanotoxicology; 2015; 9(6):686-95. PubMed ID: 25307070 [TBL] [Abstract][Full Text] [Related]
7. Growth inhibition in Raphidocelis subcapita - Evidence of nanospecific toxicity of silver nanoparticles. Kleiven M; Macken A; Oughton DH Chemosphere; 2019 Apr; 221():785-792. PubMed ID: 30684776 [TBL] [Abstract][Full Text] [Related]
8. Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. Khoshnamvand M; Hao Z; Fadare OO; Hanachi P; Chen Y; Liu J Chemosphere; 2020 Nov; 258():127346. PubMed ID: 32544815 [TBL] [Abstract][Full Text] [Related]
9. Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas. Hoheisel SM; Diamond S; Mount D Environ Toxicol Chem; 2012 Nov; 31(11):2557-63. PubMed ID: 22887018 [TBL] [Abstract][Full Text] [Related]
10. Montmorillonite clay alters toxicity of silver nanoparticles in zebrafish (Danio rerio) eleutheroembryo. Gupta GS; Dhawan A; Shanker R Chemosphere; 2016 Nov; 163():242-251. PubMed ID: 27537402 [TBL] [Abstract][Full Text] [Related]
11. Acute toxicity, bioaccumulation and effects of dietary transfer of silver from brine shrimp exposed to PVP/PEI-coated silver nanoparticles to zebrafish. Lacave JM; Fanjul Á; Bilbao E; Gutierrez N; Barrio I; Arostegui I; Cajaraville MP; Orbea A Comp Biochem Physiol C Toxicol Pharmacol; 2017 Sep; 199():69-80. PubMed ID: 28323199 [TBL] [Abstract][Full Text] [Related]
12. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions. Ye N; Wang Z; Wang S; Peijnenburg WJGM Nanotoxicology; 2018 Jun; 12(5):423-438. PubMed ID: 29658385 [TBL] [Abstract][Full Text] [Related]
13. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ribeiro F; Gallego-Urrea JA; Jurkschat K; Crossley A; Hassellöv M; Taylor C; Soares AM; Loureiro S Sci Total Environ; 2014 Jan; 466-467():232-41. PubMed ID: 23895786 [TBL] [Abstract][Full Text] [Related]
14. Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos. Groh KJ; Dalkvist T; Piccapietra F; Behra R; Suter MJ; Schirmer K Nanotoxicology; 2015 Feb; 9(1):81-91. PubMed ID: 24625062 [TBL] [Abstract][Full Text] [Related]
15. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Angel BM; Batley GE; Jarolimek CV; Rogers NJ Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009 [TBL] [Abstract][Full Text] [Related]
16. The geometry of the toxicity of silver nanoparticles to freshwater mussels. Auclair J; Peyrot C; Wilkinson KJ; Gagné F Comp Biochem Physiol C Toxicol Pharmacol; 2021 Jan; 239():108841. PubMed ID: 32781291 [TBL] [Abstract][Full Text] [Related]
17. An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data. Jemec A; Kahru A; Potthoff A; Drobne D; Heinlaan M; Böhme S; Geppert M; Novak S; Schirmer K; Rekulapally R; Singh S; Aruoja V; Sihtmäe M; Juganson K; Käkinen A; Kühnel D Environ Int; 2016 Feb; 87():20-32. PubMed ID: 26638016 [TBL] [Abstract][Full Text] [Related]
19. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay. Pokhrel LR; Silva T; Dubey B; El Badawy AM; Tolaymat TM; Scheuerman PR Sci Total Environ; 2012 Jun; 426():414-22. PubMed ID: 22521164 [TBL] [Abstract][Full Text] [Related]
20. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation. Bone AJ; Colman BP; Gondikas AP; Newton KM; Harrold KH; Cory RM; Unrine JM; Klaine SJ; Matson CW; Di Giulio RT Environ Sci Technol; 2012 Jul; 46(13):6925-33. PubMed ID: 22680837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]