These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 22865888)
1. Factors that differentiate the H-bond strengths of water near the Schiff bases in bacteriorhodopsin and Anabaena sensory rhodopsin. Saito K; Kandori H; Ishikita H J Biol Chem; 2012 Oct; 287(41):34009-18. PubMed ID: 22865888 [TBL] [Abstract][Full Text] [Related]
2. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant. Shibata M; Ihara K; Kandori H Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215 [TBL] [Abstract][Full Text] [Related]
4. FTIR study of the photoisomerization processes in the 13-cis and all-trans forms of Anabaena sensory rhodopsin at 77 K. Kawanabe A; Furutani Y; Jung KH; Kandori H Biochemistry; 2006 Apr; 45(14):4362-70. PubMed ID: 16584171 [TBL] [Abstract][Full Text] [Related]
5. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin. Shibata M; Kandori H Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984 [TBL] [Abstract][Full Text] [Related]
6. Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins. Furutani Y; Shibata M; Kandori H Photochem Photobiol Sci; 2005 Sep; 4(9):661-6. PubMed ID: 16121274 [TBL] [Abstract][Full Text] [Related]
7. FTIR study of the L intermediate of Anabaena sensory rhodopsin: structural changes in the cytoplasmic region. Kawanabe A; Furutani Y; Yoon SR; Jung KH; Kandori H Biochemistry; 2008 Sep; 47(38):10033-40. PubMed ID: 18759456 [TBL] [Abstract][Full Text] [Related]
8. Vibrational frequency and dipolar orientation of the protonated Schiff base in bacteriorhodopsin before and after photoisomerization. Kandori H; Belenky M; Herzfeld J Biochemistry; 2002 May; 41(19):6026-31. PubMed ID: 11993997 [TBL] [Abstract][Full Text] [Related]
9. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Kandori H Biochim Biophys Acta; 2004 Jul; 1658(1-2):72-9. PubMed ID: 15282177 [TBL] [Abstract][Full Text] [Related]
10. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219 [TBL] [Abstract][Full Text] [Related]
11. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote. Sumii M; Furutani Y; Waschuk SA; Brown LS; Kandori H Biochemistry; 2005 Nov; 44(46):15159-66. PubMed ID: 16285719 [TBL] [Abstract][Full Text] [Related]
12. Water molecules in the schiff base region of bacteriorhodopsin. Shibata M; Tanimoto T; Kandori H J Am Chem Soc; 2003 Nov; 125(44):13312-3. PubMed ID: 14582999 [TBL] [Abstract][Full Text] [Related]
13. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101 [TBL] [Abstract][Full Text] [Related]
14. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422 [TBL] [Abstract][Full Text] [Related]
15. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
16. Altered hydrogen bonding of Arg82 during the proton pump cycle of bacteriorhodopsin: a low-temperature polarized FTIR spectroscopic study. Tanimoto T; Shibata M; Belenky M; Herzfeld J; Kandori H Biochemistry; 2004 Jul; 43(29):9439-47. PubMed ID: 15260486 [TBL] [Abstract][Full Text] [Related]
17. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698 [TBL] [Abstract][Full Text] [Related]
18. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence for the interaction of aspartic acid 212 with tyrosine 185 and possible role in the proton pump mechanism. Rothschild KJ; Braiman MS; He YW; Marti T; Khorana HG J Biol Chem; 1990 Oct; 265(28):16985-91. PubMed ID: 2211604 [TBL] [Abstract][Full Text] [Related]
19. Conformational changes in the photocycle of Anabaena sensory rhodopsin: absence of the Schiff base counterion protonation signal. Bergo VB; Ntefidou M; Trivedi VD; Amsden JJ; Kralj JM; Rothschild KJ; Spudich JL J Biol Chem; 2006 Jun; 281(22):15208-14. PubMed ID: 16537532 [TBL] [Abstract][Full Text] [Related]
20. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch model. Tanimoto T; Furutani Y; Kandori H Biochemistry; 2003 Mar; 42(8):2300-6. PubMed ID: 12600197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]