BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

846 related articles for article (PubMed ID: 22865924)

  • 1. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics.
    Peterson AC; Russell JD; Bailey DJ; Westphall MS; Coon JJ
    Mol Cell Proteomics; 2012 Nov; 11(11):1475-88. PubMed ID: 22865924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical considerations for large-scale parallel reaction monitoring analysis.
    Gallien S; Bourmaud A; Kim SY; Domon B
    J Proteomics; 2014 Apr; 100():147-59. PubMed ID: 24200835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Unit Resolution Versus High-Resolution Accurate Mass for Parallel Reaction Monitoring.
    Heil LR; Remes PM; MacCoss MJ
    J Proteome Res; 2021 Sep; 20(9):4435-4442. PubMed ID: 34319745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry.
    Rauniyar N
    Int J Mol Sci; 2015 Dec; 16(12):28566-81. PubMed ID: 26633379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in high-resolution quantitative proteomics: implications for clinical applications.
    Gallien S; Domon B
    Expert Rev Proteomics; 2015; 12(5):489-98. PubMed ID: 26189960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer.
    Gallien S; Duriez E; Crone C; Kellmann M; Moehring T; Domon B
    Mol Cell Proteomics; 2012 Dec; 11(12):1709-23. PubMed ID: 22962056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM).
    Gallien S; Kim SY; Domon B
    Mol Cell Proteomics; 2015 Jun; 14(6):1630-44. PubMed ID: 25755295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications.
    Bourmaud A; Gallien S; Domon B
    Proteomics; 2016 Aug; 16(15-16):2146-59. PubMed ID: 27145088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted
    Cho BG; Gutierrez Reyes CD; Goli M; Gautam S; Banazadeh A; Mechref Y
    Anal Chem; 2022 Nov; 94(44):15215-15222. PubMed ID: 36301778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Resolution Parallel Reaction Monitoring with Electron Transfer Dissociation for Middle-Down Proteomics: An Application to Study the Quantitative Changes Induced by Histone Modifying Enzyme Inhibitors and Activators.
    Sweredoski MJ; Moradian A; Hess S
    Methods Mol Biol; 2017; 1647():61-69. PubMed ID: 28808995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and quantification of proteins in clinical samples using high resolution mass spectrometry.
    Gallien S; Domon B
    Methods; 2015 Jun; 81():15-23. PubMed ID: 25843604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of Cytokinins Using High-Resolution Accurate-Mass Orbitrap Mass Spectrometry and Parallel Reaction Monitoring (PRM).
    Kisiala A; Kambhampati S; Stock NL; Aoki M; Emery RJN
    Anal Chem; 2019 Dec; 91(23):15049-15056. PubMed ID: 31660717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.
    Vidova V; Spacil Z
    Anal Chim Acta; 2017 Apr; 964():7-23. PubMed ID: 28351641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer.
    Michalski A; Damoc E; Hauschild JP; Lange O; Wieghaus A; Makarov A; Nagaraj N; Cox J; Mann M; Horning S
    Mol Cell Proteomics; 2011 Sep; 10(9):M111.011015. PubMed ID: 21642640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Sensitivity Quantitative Proteomics Using Automated Multidimensional Nano-flow Chromatography and Accumulated Ion Monitoring on Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer.
    Cifani P; Kentsis A
    Mol Cell Proteomics; 2017 Nov; 16(11):2006-2016. PubMed ID: 28821601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in targeted proteomics for clinical applications.
    Domon B; Gallien S
    Proteomics Clin Appl; 2015 Apr; 9(3-4):423-31. PubMed ID: 25504492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Mass Spectrometry Analysis of Protein Phosphorylation by Selected Ion Monitoring Coupled to Parallel Reaction Monitoring (tSIM/PRM).
    Pascual J; Kangasjärvi S
    Methods Mol Biol; 2022; 2526():227-240. PubMed ID: 35657524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable Isotope-Triggered Offset Fragmentation Allows Massively Multiplexed Target Profiling on Quadrupole-Orbitrap Mass Spectrometers.
    Grossegesse M; Hartkopf F; Nitsche A; Doellinger J
    J Proteome Res; 2020 Jul; 19(7):2854-2862. PubMed ID: 32369372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics.
    Ronsein GE; Pamir N; von Haller PD; Kim DS; Oda MN; Jarvik GP; Vaisar T; Heinecke JW
    J Proteomics; 2015 Jan; 113():388-99. PubMed ID: 25449833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed, Scheduled, High-Resolution Parallel Reaction Monitoring on a Full Scan QqTOF Instrument with Integrated Data-Dependent and Targeted Mass Spectrometric Workflows.
    Schilling B; MacLean B; Held JM; Sahu AK; Rardin MJ; Sorensen DJ; Peters T; Wolfe AJ; Hunter CL; MacCoss MJ; Gibson BW
    Anal Chem; 2015 Oct; 87(20):10222-9. PubMed ID: 26398777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.