These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22866581)

  • 1. Enhanced mercuric chloride adsorption onto sulfur-modified activated carbons derived from waste tires.
    Yuan CS; Wang G; Xue SH; Ie IR; Jen YH; Tsai HH; Chen WJ
    J Air Waste Manag Assoc; 2012 Jul; 62(7):799-809. PubMed ID: 22866581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The adsorptive capacity of vapor-phase mercury chloride onto powdered activated carbon derived from waste tires.
    Lin HY; Yuan CS; Wu CH; Hung CH
    J Air Waste Manag Assoc; 2006 Nov; 56(11):1558-66. PubMed ID: 17117741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the adsorption of vapor-phase mercury chloride with an innovative composite sulfur-impregnated activated carbon.
    Ie IR; Chen WC; Yuan CS; Hung CH; Lin YC; Tsai HH; Jen YS
    J Hazard Mater; 2012 May; 217-218():43-50. PubMed ID: 22410724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis.
    Lin HY; Yuan CS; Chen WC; Hung CH
    J Air Waste Manag Assoc; 2006 Nov; 56(11):1550-7. PubMed ID: 17117740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic Modeling on the Adsorption of Vapor-Phase Mercury Chloride on Activated Carbon by Thermogravimetric Analysis.
    Chen WC; Lin HY; Yuan CS; Hung CH
    J Air Waste Manag Assoc; 2009 Feb; 59(2):227-235. PubMed ID: 29116917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of vapor-phase elemental mercury from stack emissions with sulfur-impregnated activated carbon.
    Sowlat MH; Abdollahi M; Gharibi H; Yunesian M; Rastkari N
    Rev Environ Contam Toxicol; 2014; 230():1-34. PubMed ID: 24609516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs).
    Hsi HC; Rood MJ; Rostam-Abadi M; Chen S; Chang R
    Environ Sci Technol; 2001 Jul; 35(13):2785-91. PubMed ID: 11452610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of Elemental Mercury Vapors by Activated Carbons.
    Vidic RD; McLaughlin JB
    J Air Waste Manag Assoc; 1996 Mar; 46(3):241-250. PubMed ID: 28065140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption kinetic and equilibrium study for removal of mercuric chloride by CuCl2-impregnated activated carbon sorbent.
    Li X; Liu Z; Lee JY
    J Hazard Mater; 2013 May; 252-253():419-27. PubMed ID: 23562985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption.
    Guo J; Lua AC
    J Colloid Interface Sci; 2002 Jul; 251(2):242-7. PubMed ID: 16290726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetone adsorption capacity of sulfur-doped microporous activated carbons prepared from polythiophene.
    Zhu J; Chen R; Zeng Z; Su C; Zhou K; Mo Y; Guo Y; Zhou F; Gao J; Li L
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16166-16180. PubMed ID: 30972669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical and adsorptive characteristics of activated carbons from waste polyester textiles utilizing MgO template method.
    Xu Z; Zhang D; Yuan Z; Chen W; Zhang T; Tian D; Deng H
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22602-22612. PubMed ID: 28808853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental design to optimize preparation of activated carbons for use in water treatment.
    Baçaoui A; Dahbi A; Yaacoubi A; Bennouna C; Maldonado-Hódar FJ; Rivera-Utrilla J; Carrasco-Marín F; Moreno-Castilla C
    Environ Sci Technol; 2002 Sep; 36(17):3844-9. PubMed ID: 12322759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes.
    Nakagawa K; Namba A; Mukai SR; Tamon H; Ariyadejwanich P; Tanthapanichakoon W
    Water Res; 2004 Apr; 38(7):1791-8. PubMed ID: 15026233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of activated carbons modification on porosity, surface structure and phenol adsorption.
    Stavropoulos GG; Samaras P; Sakellaropoulos GP
    J Hazard Mater; 2008 Mar; 151(2-3):414-21. PubMed ID: 17644248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires.
    Li SQ; Yao Q; Wen SE; Chi Y; Yan JH
    J Air Waste Manag Assoc; 2005 Sep; 55(9):1315-26. PubMed ID: 16259427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activated carbons obtained from sewage sludge by chemical activation: gas-phase environmental applications.
    Boualem T; Debab A; Martínez de Yuso A; Izquierdo MT
    J Environ Manage; 2014 Jul; 140():145-51. PubMed ID: 24747937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous activation/sulfurization method for production of sulfurized activated carbons: characterization and Hg(II) adsorption capacity.
    Shamsijazeyi H; Kaghazchi T
    Water Sci Technol; 2014; 69(3):546-52. PubMed ID: 24552726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of heavy metals via adsorption on activated carbon synthesized from solid wastes.
    Al-Omair MA; El-Sharkawy EA
    Environ Technol; 2007 Apr; 28(4):443-51. PubMed ID: 17500319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.