BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 22866699)

  • 21. Activated carbon from pyrolysis of brewer's spent grain: Production and adsorption properties.
    Vanreppelen K; Vanderheyden S; Kuppens T; Schreurs S; Yperman J; Carleer R
    Waste Manag Res; 2014 Jul; 32(7):634-45. PubMed ID: 25012859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of Trametes versicolor crude culture filtrates in detoxification of biomass pretreatment hydrolyzates.
    Kapoor RK; Rajan K; Carrier DJ
    Bioresour Technol; 2015; 189():99-106. PubMed ID: 25876229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced production of laccase from Coriolus versicolor NCIM 996 by nutrient optimization using response surface methodology.
    Arockiasamy S; Krishnan IP; Anandakrishnan N; Seenivasan S; Sambath A; Venkatasubramani JP
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):371-9. PubMed ID: 18459071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and characterization of laccase from the white rot fungus Trametes versicolor.
    Han MJ; Choi HT; Song HG
    J Microbiol; 2005 Dec; 43(6):555-60. PubMed ID: 16410773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pre-hydrolysis with carbohydrases facilitates the release of protein from brewer's spent grain.
    Niemi P; Martins D; Buchert J; Faulds CB
    Bioresour Technol; 2013 May; 136():529-34. PubMed ID: 23567727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovery of Phenolic Acid and Enzyme Production from Corn Silage Biologically Treated by Trametes versicolor.
    Bucić-Kojić A; Šelo G; Zelić B; Planinić M; Tišma M
    Appl Biochem Biotechnol; 2017 Mar; 181(3):948-960. PubMed ID: 27696141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid-state fermentation of rapeseed meal with the white-rot fungi trametes versicolor and Pleurotus ostreatus.
    Żuchowski J; Pecio Ł; Jaszek M; Stochmal A
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2075-81. PubMed ID: 24022781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes.
    Gonzalez JC; Medina SC; Rodriguez A; Osma JF; Alméciga-Díaz CJ; Sánchez OF
    PLoS One; 2013; 8(9):e73721. PubMed ID: 24019936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.
    Wu Y; Jiang Y; Jiao J; Liu M; Hu F; Griffiths BS; Li H
    Colloids Surf B Biointerfaces; 2014 Feb; 114():342-8. PubMed ID: 24225344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitosan multiple addition enhances laccase production from Trametes versicolor.
    Adekunle AE; Wang F; Hu J; Ma A; Guo C; Zhuang G; Liu CZ
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):1973-81. PubMed ID: 26178243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laccase production by Trametes versicolor in solid-state fermentation using tea residues as substrate and its application in dye decolorization.
    Xu L; Sun K; Wang F; Zhao L; Hu J; Ma H; Ding Z
    J Environ Manage; 2020 Sep; 270():110904. PubMed ID: 32721339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brewer's spent grain as raw material for lactic acid production by Lactobacillus delbrueckii.
    Mussatto SI; Fernandes M; Dragone G; Mancilha IM; Roberto IC
    Biotechnol Lett; 2007 Dec; 29(12):1973-6. PubMed ID: 17700998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ceramic honeycomb as support for covalent immobilization of laccase from Trametes versicolor and transformation of nuclear fast red.
    Plagemann R; Jonas L; Kragl U
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):313-20. PubMed ID: 21181152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens.
    Gaitan IJ; Medina SC; González JC; Rodríguez A; Espejo AJ; Osma JF; Sarria V; Alméciga-Díaz CJ; Sánchez OF
    Bioresour Technol; 2011 Feb; 102(3):3632-5. PubMed ID: 21115244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functionalized magnetic mesoporous silica nanoparticles: fabrication, laccase adsorption performance and direct laccase capture from Trametes versicolor fermentation broth.
    Wang F; Huang W; Guo C; Liu CZ
    Bioresour Technol; 2012 Dec; 126():117-22. PubMed ID: 23073097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphology and laccase production of white-rot fungi grown on wheat bran flakes under semi-solid-state fermentation conditions.
    Osma JF; Moilanen U; Toca-Herrera JL; Rodríguez-Couto S
    FEMS Microbiol Lett; 2011 May; 318(1):27-34. PubMed ID: 21291496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scale-up laccase production from Trametes versicolor stimulated by vanillic acid.
    Wang KF; Hu JH; Guo C; Liu CZ
    Bioprocess Biosyst Eng; 2016 Jul; 39(7):1041-9. PubMed ID: 26971792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor.
    Champagne PP; Ramsay JA
    Appl Microbiol Biotechnol; 2005 Dec; 69(3):276-85. PubMed ID: 15834615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of onion-type multilamellar liposomes on Trametes versicolor laccase activity and stability.
    Prévoteau A; Faure C
    Biochimie; 2012 Jan; 94(1):59-65. PubMed ID: 22051377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brewer's Spent Grains-Valuable Beer Industry By-Product.
    Jackowski M; Niedźwiecki Ł; Jagiełło K; Uchańska O; Trusek A
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33322175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.