These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22866902)

  • 1. Quantification of hormone-humic acid interactions in nanofiltration.
    Shen J; Jin Yang X; Schäfer AI
    Environ Sci Technol; 2012 Oct; 46(19):10597-604. PubMed ID: 22866902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention of pesticide Endosulfan by nanofiltration: influence of organic matter-pesticide complexation and solute-membrane interactions.
    De Munari A; Semiao AJ; Antizar-Ladislao B
    Water Res; 2013 Jun; 47(10):3484-96. PubMed ID: 23615337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH dependence of steroid hormone--organic matter interactions at environmental concentrations.
    Neale PA; Escher BI; Schäfer AI
    Sci Total Environ; 2009 Jan; 407(3):1164-73. PubMed ID: 18977018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of dissolved organic matter on estrone removal by NF membranes and the role of their structures.
    Jin X; Hu J; Ong SL
    Water Res; 2007 Jul; 41(14):3077-88. PubMed ID: 17548103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms.
    Nghiem LD; Schäfer AI; Elimelech M
    Environ Sci Technol; 2004 Mar; 38(6):1888-96. PubMed ID: 15074703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of solute-solute interactions using negligible-depletion solid-phase microextraction: measuring the affinity of estradiol to bulk organic matter.
    Neale PA; Escher BI; Schäfer AI
    Environ Sci Technol; 2008 Apr; 42(8):2886-92. PubMed ID: 18497139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of steroid micropollutants on polymer-based spherical activated carbon (PBSAC).
    Tagliavini M; Engel F; Weidler PG; Scherer T; Schäfer AI
    J Hazard Mater; 2017 Sep; 337():126-137. PubMed ID: 28549305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole, and triclosan.
    Chang EE; Chang YC; Liang CH; Huang CP; Chiang PC
    J Hazard Mater; 2012 Jun; 221-222():19-27. PubMed ID: 22554383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis.
    Schäfer AI; Nghiem LD; Waite TD
    Environ Sci Technol; 2003 Jan; 37(1):182-8. PubMed ID: 12542309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning of selected environmental pollutants into organic matter as determined by solid-phase microextraction.
    Prosen H; Fingler S; Zupancic-Kralj L; Drevenkar V
    Chemosphere; 2007 Jan; 66(8):1580-9. PubMed ID: 16996106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of natural hormone estrone from secondary effluents using nanofiltration and reverse osmosis.
    Jin X; Hu J; Ong SL
    Water Res; 2010 Jan; 44(2):638-48. PubMed ID: 19879623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of arsenic (V) on kaolinite and on kaolinite-humic acid complexes. Role of humic acid nitrogen groups.
    Saada A; Breeze D; Crouzet C; Cornu S; Baranger P
    Chemosphere; 2003 Jun; 51(8):757-63. PubMed ID: 12668034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of arsenic(III) via nanofiltration: contribution of organic matter interactions.
    Boussouga YA; Mohankumar MB; Gopalakrishnan A; Welle A; Schäfer AI
    Water Res; 2021 Aug; 201():117315. PubMed ID: 34198199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dsorption of estrone on nanofiltration and reverse osmosis membranes in water and wastewater treatment.
    Nghiem LD; Schäfer AI; Waite TD
    Water Sci Technol; 2002; 46(4-5):265-72. PubMed ID: 12361019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of humic acid with nanosized inorganic oxides.
    Yang K; Lin D; Xing B
    Langmuir; 2009 Apr; 25(6):3571-6. PubMed ID: 19708146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction and experimental evaluation of soil sorption by natural hormones and hormone mimics.
    Card ML; Chin YP; Lee LS; Khan B
    J Agric Food Chem; 2012 Feb; 60(6):1480-7. PubMed ID: 22224428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of desorption of organic compounds from dissolved organic matter.
    Kopinke FD; Ramus K; Poerschmann J; Georgi A
    Environ Sci Technol; 2011 Dec; 45(23):10013-9. PubMed ID: 22035249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the impacts of some environmentally relevant factors on the availability of bisphenol A with negligible-depletion SPME.
    Hu XL; Peng JF; Liu JF; Jiang GB; Jönsson JA
    Chemosphere; 2006 Dec; 65(11):1935-41. PubMed ID: 16930674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model.
    Chaudhari LB; Murthy ZV
    J Hazard Mater; 2010 Aug; 180(1-3):309-15. PubMed ID: 20452729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.