These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 22867131)

  • 21. Role of S100A8/A9 for Cytokine Secretion, Revealed in Neutrophils Derived from ER-Hoxb8 Progenitors.
    Zhou Y; Hann J; Schenten V; Plançon S; Bueb JL; Tolle F; Bréchard S
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myeloperoxidase-dependent lipid peroxidation promotes the oxidative modification of cytosolic proteins in phagocytic neutrophils.
    Wilkie-Grantham RP; Magon NJ; Harwood DT; Kettle AJ; Vissers MC; Winterbourn CC; Hampton MB
    J Biol Chem; 2015 Apr; 290(15):9896-905. PubMed ID: 25697357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2.
    Kerkhoff C; Nacken W; Benedyk M; Dagher MC; Sopalla C; Doussiere J
    FASEB J; 2005 Mar; 19(3):467-9. PubMed ID: 15642721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes.
    Rybicka JM; Balce DR; Khan MF; Krohn RM; Yates RM
    Proc Natl Acad Sci U S A; 2010 Jun; 107(23):10496-501. PubMed ID: 20498052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. S100A8 and S100A9 in human arterial wall. Implications for atherogenesis.
    McCormick MM; Rahimi F; Bobryshev YV; Gaus K; Zreiqat H; Cai H; Lord RS; Geczy CL
    J Biol Chem; 2005 Dec; 280(50):41521-9. PubMed ID: 16216873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variations in the Phagosomal Environment of Human Neutrophils and Mononuclear Phagocyte Subsets.
    Foote JR; Patel AA; Yona S; Segal AW
    Front Immunol; 2019; 10():188. PubMed ID: 30881356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. iPLA2, a novel determinant in Ca2+- and phosphorylation-dependent S100A8/A9 regulated NOX2 activity.
    Schenten V; Bréchard S; Plançon S; Melchior C; Frippiat JP; Tschirhart EJ
    Biochim Biophys Acta; 2010 Jul; 1803(7):840-7. PubMed ID: 20219570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective enrichment of NADPH oxidase activity in phagosomes from guinea pig polymorphonuclear leukocytes.
    Bellavite P; Serra MC; Davoli A; Rossi F
    Inflammation; 1982 Mar; 6(1):21-9. PubMed ID: 6282746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis.
    Nunes P; Demaurex N; Dinauer MC
    Traffic; 2013 Nov; 14(11):1118-31. PubMed ID: 23980663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peroxiredoxin 6 translocates to the plasma membrane during neutrophil activation and is required for optimal NADPH oxidase activity.
    Ambruso DR; Ellison MA; Thurman GW; Leto TL
    Biochim Biophys Acta; 2012 Feb; 1823(2):306-15. PubMed ID: 22178385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. K⁺-Cl⁻ cotransport mediates the bactericidal activity of neutrophils by regulating NADPH oxidase activation.
    Sun YT; Shieh CC; Delpire E; Shen MR
    J Physiol; 2012 Jul; 590(14):3231-43. PubMed ID: 22526882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases.
    Rada B; Leto TL
    Contrib Microbiol; 2008; 15():164-187. PubMed ID: 18511861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox reactions and microbial killing in the neutrophil phagosome.
    Winterbourn CC; Kettle AJ
    Antioxid Redox Signal; 2013 Feb; 18(6):642-60. PubMed ID: 22881869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidized phagosomal NOX2 complex is replenished from lysosomes.
    Dingjan I; Linders PT; van den Bekerom L; Baranov MV; Halder P; Ter Beest M; van den Bogaart G
    J Cell Sci; 2017 Apr; 130(7):1285-1298. PubMed ID: 28202687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic Analysis of Phagosomal ROS Generation.
    Dupré-Crochet S; Erard M; Nüβe O
    Methods Mol Biol; 2019; 1982():301-312. PubMed ID: 31172480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. S100A8 and S100A9 inhibit neutrophil oxidative metabolism in-vitro: involvement of adenosine metabolites.
    Sroussi HY; Lu Y; Zhang QL; Villines D; Marucha PT
    Free Radic Res; 2010 Apr; 44(4):389-96. PubMed ID: 20166886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane.
    El-Benna J; Dang PM; Gougerot-Pocidalo MA
    Semin Immunopathol; 2008 Jul; 30(3):279-89. PubMed ID: 18536919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determinants of the phagosomal pH in neutrophils.
    Jankowski A; Scott CC; Grinstein S
    J Biol Chem; 2002 Feb; 277(8):6059-66. PubMed ID: 11744729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutrophil priming that turns natural FFA2R agonists into potent activators of the superoxide generating NADPH-oxidase.
    Mårtensson J; Holdfeldt A; Sundqvist M; Gabl M; Kenakin TP; Björkman L; Forsman H; Dahlgren C
    J Leukoc Biol; 2018 Dec; 104(6):1117-1132. PubMed ID: 30134499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of Neutrophil Functions by Hv1/VSOP Voltage-Gated Proton Channels.
    Okochi Y; Okamura Y
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33807711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.