BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 22867133)

  • 1. Physicochemical modification of kafirin microparticles and their ability to bind bone morphogenetic protein-2 (BMP-2), for application as a biomaterial.
    Anyango JO; Duneas N; Taylor JR; Taylor J
    J Agric Food Chem; 2012 Aug; 60(34):8419-26. PubMed ID: 22867133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement in water stability and other related functional properties of thin cast kafirin protein films.
    Anyango JO; Taylor J; Taylor JR
    J Agric Food Chem; 2011 Dec; 59(23):12674-82. PubMed ID: 22049992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization, and protein digestion.
    da Silva LS; Taylor J; Taylor JR
    J Agric Food Chem; 2011 Sep; 59(17):9265-70. PubMed ID: 21819142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of γ-kafirin in the formation and organization of kafirin microstructures.
    Anyango JO; Taylor JR; Taylor J
    J Agric Food Chem; 2013 Nov; 61(45):10757-65. PubMed ID: 24148070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of glutaraldehyde cross-linked vicilin nano- and microparticles.
    Ezpeleta I; Irache JM; Gueguen J; Orecchioni AM
    J Microencapsul; 1997; 14(5):557-65. PubMed ID: 9292432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of free-standing films from kafirin protein microparticles: mechanism of formation and functional properties.
    Taylor J; Taylor JR; Belton PS; Minnaar A
    J Agric Food Chem; 2009 Aug; 57(15):6729-35. PubMed ID: 19610655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kafirin microparticle encapsulation of catechin and sorghum condensed tannins.
    Taylor J; Taylor JR; Belton PS; Minnaar A
    J Agric Food Chem; 2009 Aug; 57(16):7523-8. PubMed ID: 19642673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of heat-treated sorghum and maize meal and their prolamin proteins.
    Emmambux MN; Taylor JR
    J Agric Food Chem; 2009 Feb; 57(3):1045-50. PubMed ID: 19143536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility and biodegradation of protein microparticle and film scaffolds made from kafirin (sorghum prolamin protein) subcutaneously implanted in rodent models.
    Taylor J; Anyango JO; Potgieter M; Kallmeyer K; Naidoo V; Pepper MS; Taylor JR
    J Biomed Mater Res A; 2015 Aug; 103(8):2582-90. PubMed ID: 25524818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of kafirin and kafirin film structure by heating with microwave energy and tannin complexation.
    Byaruhanga YB; Emmambux MN; Belton PS; Wellner N; Ng KG; Taylor JR
    J Agric Food Chem; 2006 Jun; 54(12):4198-207. PubMed ID: 16756347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan microparticles for the controlled delivery of fluoride.
    Keegan GM; Smart JD; Ingram MJ; Barnes LM; Burnett GR; Rees GD
    J Dent; 2012 Mar; 40(3):229-40. PubMed ID: 22212236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, morphology, and assembly behavior of kafirin.
    Xiao J; Li Y; Li J; Gonzalez AP; Xia Q; Huang Q
    J Agric Food Chem; 2015 Jan; 63(1):216-24. PubMed ID: 25510968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement in the delivery system of bone morphogenetic protein-2: a new approach to promote bone formation.
    Zhang Q; He QF; Zhang TH; Yu XL; Liu Q; Deng FL
    Biomed Mater; 2012 Aug; 7(4):045002. PubMed ID: 22556155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of polyhydroxyalkanoate synthase for in vitro polymerization as revealed by atomic force microscopy.
    Kikkawa Y; Narike M; Hiraishi T; Kanesato M; Sudesh K; Doi Y; Tsuge T
    Macromol Biosci; 2005 Oct; 5(10):929-35. PubMed ID: 16208629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new allele of γ-kafirin gene coding for a protein with high lysine content in Mexican white sorghum germplasm.
    Chiquito-Almanza E; Ochoa-Zarzosa A; López-Meza JE; Pecina-Quintero V; Nuñez-Colín CA; Anaya-López JL
    J Sci Food Agric; 2016 Aug; 96(10):3342-50. PubMed ID: 26526074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From collagen-chitosan blends to three-dimensional scaffolds: the influences of chitosan on collagen nanofibrillar structure and mechanical property.
    Wang X; Sang L; Luo D; Li X
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):233-40. PubMed ID: 20880671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cooling treatment and glutaraldehyde on the morphology of Au nanostructures synthesized from chitosan.
    Wei D; Qian W; Shi Y; Ding S; Xia Y
    Carbohydr Res; 2008 Feb; 343(3):512-20. PubMed ID: 18083154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of human albumin microparticles prepared by a chilled cross-linking technique.
    Oner L; Groves MJ
    J Pharm Pharmacol; 1993 Oct; 45(10):866-70. PubMed ID: 7904624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of crosslinking heparin to demineralized bone matrix on mechanical strength and specific binding to human bone morphogenetic protein-2.
    Lin H; Zhao Y; Sun W; Chen B; Zhang J; Zhao W; Xiao Z; Dai J
    Biomaterials; 2008 Mar; 29(9):1189-97. PubMed ID: 18083224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and properties of viscoelastic masses made from kafirin by a process of simple coacervation from solution in glacial acetic acid using water.
    Elhassan MSM; Oguntoyinbo SI; Taylor J; Taylor JRN
    Food Chem; 2018 Jan; 239():333-342. PubMed ID: 28873577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.