These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 22868037)
1. Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.). Kang G; Li G; Zheng B; Han Q; Wang C; Zhu Y; Guo T Biochim Biophys Acta; 2012 Dec; 1824(12):1324-33. PubMed ID: 22868037 [TBL] [Abstract][Full Text] [Related]
2. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. Kang G; Li G; Xu W; Peng X; Han Q; Zhu Y; Guo T J Proteome Res; 2012 Dec; 11(12):6066-79. PubMed ID: 23101459 [TBL] [Abstract][Full Text] [Related]
3. Alleviation of high salt toxicity-induced oxidative damage by salicylic acid pretreatment in two wheat cultivars. Mutlu S; Atici Ö Toxicol Ind Health; 2013 Feb; 29(1):89-96. PubMed ID: 22722774 [TBL] [Abstract][Full Text] [Related]
4. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V J Proteomics; 2017 Jun; 163():28-51. PubMed ID: 28511789 [TBL] [Abstract][Full Text] [Related]
5. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery. Lv DW; Zhu GR; Zhu D; Bian YW; Liang XN; Cheng ZW; Deng X; Yan YM J Proteomics; 2016 Jun; 143():93-105. PubMed ID: 27095598 [TBL] [Abstract][Full Text] [Related]
6. Chloroplast proteomic analysis of Triticum aestivum L. seedlings responses to low levels of UV-B stress reveals novel molecular mechanism associated with UV-B tolerance. Gao L; Wang X; Li Y; Han R Environ Sci Pollut Res Int; 2019 Mar; 26(7):7143-7155. PubMed ID: 30652271 [TBL] [Abstract][Full Text] [Related]
7. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Arfan M; Athar HR; Ashraf M J Plant Physiol; 2007 Jun; 164(6):685-94. PubMed ID: 16884826 [TBL] [Abstract][Full Text] [Related]
8. Boamah S; Zhang S; Xu B; Li T; Calderón-Urrea A; John Tiika R PeerJ; 2022; 10():e12923. PubMed ID: 36530412 [TBL] [Abstract][Full Text] [Related]
9. Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Gao L; Yan X; Li X; Guo G; Hu Y; Ma W; Yan Y Phytochemistry; 2011 Jul; 72(10):1180-91. PubMed ID: 21257186 [TBL] [Abstract][Full Text] [Related]
10. The wheat chloroplastic proteome. Kamal AH; Cho K; Choi JS; Bae KH; Komatsu S; Uozumi N; Woo SH J Proteomics; 2013 Nov; 93():326-42. PubMed ID: 23563086 [TBL] [Abstract][Full Text] [Related]
11. Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. Sang T; Shan X; Li B; Shu S; Sun J; Guo S Plant Cell Rep; 2016 Aug; 35(8):1769-82. PubMed ID: 27351994 [TBL] [Abstract][Full Text] [Related]
12. Proteomic Analysis of Vernalization Responsive Proteins in Winter Wheat Jing841. Feng Y; Kong B; Zhang J; Chen X; Yuan J; Tang X; Ma C Protein Pept Lett; 2018; 25(3):260-274. PubMed ID: 29345567 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptomic and metabolic profiling provides insight into the mechanism by which the autophagy inhibitor 3-MA enhances salt stress sensitivity in wheat seedlings. Yue J; Wang Y; Jiao J; Wang H BMC Plant Biol; 2021 Dec; 21(1):577. PubMed ID: 34872497 [TBL] [Abstract][Full Text] [Related]
14. Differential proteomics: Effect of growth regulators on salt stress responses in safflower seedlings. Shaki F; Ebrahimzadeh Maboud H; Niknam V Pestic Biochem Physiol; 2020 Mar; 164():149-155. PubMed ID: 32284121 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions. Li G; Peng X; Xuan H; Wei L; Yang Y; Guo T; Kang G J Proteome Res; 2013 Nov; 12(11):4846-61. PubMed ID: 24074260 [TBL] [Abstract][Full Text] [Related]
16. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Li G; Peng X; Wei L; Kang G Gene; 2013 Oct; 529(2):321-5. PubMed ID: 23948081 [TBL] [Abstract][Full Text] [Related]
17. The protective effect of exogenous salicylic and gallic acids ameliorates the adverse effects of ionizing radiation stress in wheat seedlings by modulating the antioxidant defence system. Colak N; Kurt-Celebi A; Fauzan R; Torun H; Ayaz FA Plant Physiol Biochem; 2021 Nov; 168():526-545. PubMed ID: 34826704 [TBL] [Abstract][Full Text] [Related]
18. Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. Liang L; Lu YL; Yang H Environ Sci Pollut Res Int; 2012 Jul; 19(6):2044-54. PubMed ID: 22231370 [TBL] [Abstract][Full Text] [Related]
19. Proteomic and physiological responses of Arabidopsis thaliana exposed to salinity stress and N-acyl-homoserine lactone. Ding L; Cao J; Duan Y; Li J; Yang Y; Yang G; Zhou Y Physiol Plant; 2016 Dec; 158(4):414-434. PubMed ID: 27265884 [TBL] [Abstract][Full Text] [Related]
20. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Li XJ; Yang MF; Chen H; Qu LQ; Chen F; Shen SH Biochim Biophys Acta; 2010 Apr; 1804(4):929-40. PubMed ID: 20079886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]