These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 22868037)
21. Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress. Zhang N; Zhang L; Shi C; Zhao L; Cui D; Chen F J Proteome Res; 2018 Jul; 17(7):2256-2281. PubMed ID: 29761697 [TBL] [Abstract][Full Text] [Related]
22. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Rong W; Qi L; Wang A; Ye X; Du L; Liang H; Xin Z; Zhang Z Plant Biotechnol J; 2014 May; 12(4):468-79. PubMed ID: 24393105 [TBL] [Abstract][Full Text] [Related]
23. Insights into salicylic acid responses in cucumber (Cucumis sativus L.) cotyledons based on a comparative proteomic analysis. Hao JH; Dong CJ; Zhang ZG; Wang XL; Shang QM Plant Sci; 2012 May; 187():69-82. PubMed ID: 22404834 [TBL] [Abstract][Full Text] [Related]
24. Physiological, proteomic, and metabolomic analysis provide insights into Bacillus sp.-mediated salt tolerance in wheat. Zhao Y; Zhang F; Mickan B; Wang D; Wang W Plant Cell Rep; 2022 Jan; 41(1):95-118. PubMed ID: 34546426 [TBL] [Abstract][Full Text] [Related]
25. Alleviation of salt stress in wheat seedlings by mammalian sex hormones. Erdal S J Sci Food Agric; 2012 May; 92(7):1411-6. PubMed ID: 22102166 [TBL] [Abstract][Full Text] [Related]
26. Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. Kumari A; Pandey-Rai S Plant Physiol Biochem; 2018 Nov; 132():590-602. PubMed ID: 30326438 [TBL] [Abstract][Full Text] [Related]
27. Exogenous Salicylic Acid Enhances the Resistance of Wheat Seedlings to Hessian Fly (Diptera: Cecidomyiidae) Infestation Under Heat Stress. Underwood J; Moch J; Chen MS; Zhu L J Econ Entomol; 2014 Oct; 107(5):2000-4. PubMed ID: 26309292 [TBL] [Abstract][Full Text] [Related]
28. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves. Dong CJ; Cao N; Li L; Shang QM PLoS One; 2016; 11(8):e0161395. PubMed ID: 27551830 [TBL] [Abstract][Full Text] [Related]
29. Proteomic analysis of S-nitrosylated and S-glutathionylated proteins in wheat seedlings with different dehydration tolerances. Gietler M; Nykiel M; Orzechowski S; Fettke J; Zagdańska B Plant Physiol Biochem; 2016 Nov; 108():507-518. PubMed ID: 27596017 [TBL] [Abstract][Full Text] [Related]
30. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses. Makhloufi E; Yousfi FE; Marande W; Mila I; Hanana M; Bergès H; Mzid R; Bouzayen M J Exp Bot; 2014 Dec; 65(22):6359-71. PubMed ID: 25205575 [TBL] [Abstract][Full Text] [Related]
31. Hg-responsive proteins identified in wheat seedlings using iTRAQ analysis and the role of ABA in Hg stress. Kang G; Li G; Wang L; Wei L; Yang Y; Wang P; Yang Y; Wang Y; Feng W; Wang C; Guo T J Proteome Res; 2015 Jan; 14(1):249-67. PubMed ID: 25330896 [TBL] [Abstract][Full Text] [Related]
32. Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. Jacoby RP; Millar AH; Taylor NL J Proteome Res; 2010 Dec; 9(12):6595-604. PubMed ID: 21043471 [TBL] [Abstract][Full Text] [Related]
33. [Mechanism of salicylic acid ameliorates salt-induced changes in Andrographis paniculata]. Qi-Chao W; Ling XU; Miao Z; Wei-Guo C; Xue-Min Z; Xin-Han XU; Zong-Suo L Zhongguo Zhong Yao Za Zhi; 2020 Nov; 45(22):5465-5471. PubMed ID: 33350207 [TBL] [Abstract][Full Text] [Related]
34. Proteomic analysis of salicylic acid-induced resistance to Magnaporthe oryzae in susceptible and resistant rice. Li Y; Zhang Z; Nie Y; Zhang L; Wang Z Proteomics; 2012 Aug; 12(14):2340-54. PubMed ID: 22730241 [TBL] [Abstract][Full Text] [Related]
35. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]
36. Enhancing salt stress tolerance in wheat (Triticum aestivum) seedlings: insights from trehalose and mannitol. Alhudhaibi AM; Ibrahim MAR; Abd-Elaziz SMS; Farag HRM; Elsayed SM; Ibrahim HA; Hossain AS; Alharbi BM; Haouala F; Elkelish A; Srour HAM BMC Plant Biol; 2024 May; 24(1):472. PubMed ID: 38811894 [TBL] [Abstract][Full Text] [Related]
37. Proteomic analysis on the leaves of TaBTF3 gene virus-induced silenced wheat plants may reveal its regulatory mechanism. Kang G; Li G; Ma H; Wang C; Guo T J Proteomics; 2013 May; 83():130-43. PubMed ID: 23563083 [TBL] [Abstract][Full Text] [Related]
38. [Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination]. Sakhabutdinova AR; Fatkhutdinova DR; Shakirova FM Prikl Biokhim Mikrobiol; 2004; 40(5):579-83. PubMed ID: 15553791 [TBL] [Abstract][Full Text] [Related]
39. Exogenous salicylic acid improves resistance of aphid-susceptible wheat to the grain aphid, Feng JL; Zhang J; Yang J; Zou LP; Fang TT; Xu HL; Cai QN Bull Entomol Res; 2021 Oct; 111(5):544-552. PubMed ID: 33814021 [TBL] [Abstract][Full Text] [Related]
40. Transcriptomic analysis reveals the mechanism of the alleviation of salt stress by salicylic acid in pepper (Capsicum annuum L.). Ma J; Wang Y; Wang LY; Lin D; Yang Y Mol Biol Rep; 2023 Apr; 50(4):3593-3606. PubMed ID: 36418774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]