BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22868200)

  • 1. Improved regeneration after spinal cord injury in mice lacking functional T- and B-lymphocytes.
    Wu B; Matic D; Djogo N; Szpotowicz E; Schachner M; Jakovcevski I
    Exp Neurol; 2012 Oct; 237(2):274-85. PubMed ID: 22868200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved regeneration after femoral nerve injury in mice lacking functional T- and B-lymphocytes.
    Mehanna A; Szpotowicz E; Schachner M; Jakovcevski I
    Exp Neurol; 2014 Nov; 261():147-55. PubMed ID: 24967682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic overexpression of the cell adhesion molecule L1 in neurons facilitates recovery after mouse spinal cord injury.
    Jakovcevski I; Djogo N; Hölters LS; Szpotowicz E; Schachner M
    Neuroscience; 2013 Nov; 252():1-12. PubMed ID: 23933311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of neural cell adhesion molecule deletion on regeneration after mouse spinal cord injury.
    Saini V; Loers G; Kaur G; Schachner M; Jakovcevski I
    Eur J Neurosci; 2016 Jul; 44(1):1734-46. PubMed ID: 27178448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perforin affects regeneration in a mouse spinal cord injury model.
    Jakovcevski I; Schachner M
    Int J Neurosci; 2022 Jan; 132(1):1-12. PubMed ID: 32672480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA
    Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FTY720 improves functional recovery after spinal cord injury by primarily nonimmunomodulatory mechanisms.
    Norimatsu Y; Ohmori T; Kimura A; Madoiwa S; Mimuro J; Seichi A; Yatomi Y; Hoshino Y; Sakata Y
    Am J Pathol; 2012 Apr; 180(4):1625-35. PubMed ID: 22417787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmented locomotor recovery after spinal cord injury in the athymic nude rat.
    Potas JR; Zheng Y; Moussa C; Venn M; Gorrie CA; Deng C; Waite PM
    J Neurotrauma; 2006 May; 23(5):660-73. PubMed ID: 16689668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Recovery of movement after spinal cord injury in DO11.10 transgenic mouse].
    Wang H; Guo J; Zhao Y; Bian GL; Liu FF; Yu CY; Feng R; Ju G; Wang J
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2010 Mar; 26(3):231-4. PubMed ID: 20230685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The immunological response to spinal cord injury: helpful or harmful?
    Laliberte AM; Fehlings MG
    Exp Neurol; 2013 Sep; 247():282-5. PubMed ID: 23333564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Schwann cells engineered to express the cell adhesion molecule L1 accelerate myelination and motor recovery after spinal cord injury.
    Lavdas AA; Chen J; Papastefanaki F; Chen S; Schachner M; Matsas R; Thomaidou D
    Exp Neurol; 2010 Jan; 221(1):206-16. PubMed ID: 19909742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin-17 deficiency improves locomotor recovery and tissue sparing after spinal cord contusion injury in mice.
    Hill F; Kim CF; Gorrie CA; Moalem-Taylor G
    Neurosci Lett; 2011 Jan; 487(3):363-7. PubMed ID: 21034793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed applications of L1 and chondroitinase ABC promote recovery after spinal cord injury.
    Lee HJ; Bian S; Jakovcevski I; Wu B; Irintchev A; Schachner M
    J Neurotrauma; 2012 Jul; 29(10):1850-63. PubMed ID: 22497349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NCAM-mediated locomotor recovery from spinal cord contusion injury involves neuroprotection, axon regeneration, and synaptogenesis.
    Zhang S; Xia YY; Lim HC; Tang FR; Feng ZW
    Neurochem Int; 2010 Jul; 56(8):919-29. PubMed ID: 20381564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses.
    Lee HJ; Jakovcevski I; Radonjic N; Hoelters L; Schachner M; Irintchev A
    Exp Neurol; 2009 Apr; 216(2):365-74. PubMed ID: 19150614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression.
    Namsolleck P; Boato F; Schwengel K; Paulis L; Matho KS; Geurts N; Thöne-Reineke C; Lucht K; Seidel K; Hallberg A; Dahlöf B; Unger T; Hendrix S; Steckelings UM
    Neurobiol Dis; 2013 Mar; 51():177-91. PubMed ID: 23174180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.
    Chen J; Wu J; Apostolova I; Skup M; Irintchev A; Kügler S; Schachner M
    Brain; 2007 Apr; 130(Pt 4):954-69. PubMed ID: 17438016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord.
    Chen Q; Shine HD
    J Neurosci Res; 2013 Oct; 91(10):1280-91. PubMed ID: 23907999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice.
    Ankeny DP; Guan Z; Popovich PG
    J Clin Invest; 2009 Oct; 119(10):2990-9. PubMed ID: 19770513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery from spinal cord injury in tumor necrosis factor-alpha, signal transducers and activators of transcription 4 and signal transducers and activators of transcription 6 null mice.
    Fraidakis MJ; Kiyotani T; Pernold K; Bergström J; Olson L
    Neuroreport; 2007 Jan; 18(2):185-9. PubMed ID: 17301687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.