These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22868200)

  • 1. Improved regeneration after spinal cord injury in mice lacking functional T- and B-lymphocytes.
    Wu B; Matic D; Djogo N; Szpotowicz E; Schachner M; Jakovcevski I
    Exp Neurol; 2012 Oct; 237(2):274-85. PubMed ID: 22868200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved regeneration after femoral nerve injury in mice lacking functional T- and B-lymphocytes.
    Mehanna A; Szpotowicz E; Schachner M; Jakovcevski I
    Exp Neurol; 2014 Nov; 261():147-55. PubMed ID: 24967682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic overexpression of the cell adhesion molecule L1 in neurons facilitates recovery after mouse spinal cord injury.
    Jakovcevski I; Djogo N; Hölters LS; Szpotowicz E; Schachner M
    Neuroscience; 2013 Nov; 252():1-12. PubMed ID: 23933311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of neural cell adhesion molecule deletion on regeneration after mouse spinal cord injury.
    Saini V; Loers G; Kaur G; Schachner M; Jakovcevski I
    Eur J Neurosci; 2016 Jul; 44(1):1734-46. PubMed ID: 27178448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perforin affects regeneration in a mouse spinal cord injury model.
    Jakovcevski I; Schachner M
    Int J Neurosci; 2022 Jan; 132(1):1-12. PubMed ID: 32672480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA
    Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FTY720 improves functional recovery after spinal cord injury by primarily nonimmunomodulatory mechanisms.
    Norimatsu Y; Ohmori T; Kimura A; Madoiwa S; Mimuro J; Seichi A; Yatomi Y; Hoshino Y; Sakata Y
    Am J Pathol; 2012 Apr; 180(4):1625-35. PubMed ID: 22417787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmented locomotor recovery after spinal cord injury in the athymic nude rat.
    Potas JR; Zheng Y; Moussa C; Venn M; Gorrie CA; Deng C; Waite PM
    J Neurotrauma; 2006 May; 23(5):660-73. PubMed ID: 16689668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Recovery of movement after spinal cord injury in DO11.10 transgenic mouse].
    Wang H; Guo J; Zhao Y; Bian GL; Liu FF; Yu CY; Feng R; Ju G; Wang J
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2010 Mar; 26(3):231-4. PubMed ID: 20230685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The immunological response to spinal cord injury: helpful or harmful?
    Laliberte AM; Fehlings MG
    Exp Neurol; 2013 Sep; 247():282-5. PubMed ID: 23333564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Schwann cells engineered to express the cell adhesion molecule L1 accelerate myelination and motor recovery after spinal cord injury.
    Lavdas AA; Chen J; Papastefanaki F; Chen S; Schachner M; Matsas R; Thomaidou D
    Exp Neurol; 2010 Jan; 221(1):206-16. PubMed ID: 19909742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin-17 deficiency improves locomotor recovery and tissue sparing after spinal cord contusion injury in mice.
    Hill F; Kim CF; Gorrie CA; Moalem-Taylor G
    Neurosci Lett; 2011 Jan; 487(3):363-7. PubMed ID: 21034793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed applications of L1 and chondroitinase ABC promote recovery after spinal cord injury.
    Lee HJ; Bian S; Jakovcevski I; Wu B; Irintchev A; Schachner M
    J Neurotrauma; 2012 Jul; 29(10):1850-63. PubMed ID: 22497349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NCAM-mediated locomotor recovery from spinal cord contusion injury involves neuroprotection, axon regeneration, and synaptogenesis.
    Zhang S; Xia YY; Lim HC; Tang FR; Feng ZW
    Neurochem Int; 2010 Jul; 56(8):919-29. PubMed ID: 20381564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses.
    Lee HJ; Jakovcevski I; Radonjic N; Hoelters L; Schachner M; Irintchev A
    Exp Neurol; 2009 Apr; 216(2):365-74. PubMed ID: 19150614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression.
    Namsolleck P; Boato F; Schwengel K; Paulis L; Matho KS; Geurts N; Thöne-Reineke C; Lucht K; Seidel K; Hallberg A; Dahlöf B; Unger T; Hendrix S; Steckelings UM
    Neurobiol Dis; 2013 Mar; 51():177-91. PubMed ID: 23174180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.
    Chen J; Wu J; Apostolova I; Skup M; Irintchev A; Kügler S; Schachner M
    Brain; 2007 Apr; 130(Pt 4):954-69. PubMed ID: 17438016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord.
    Chen Q; Shine HD
    J Neurosci Res; 2013 Oct; 91(10):1280-91. PubMed ID: 23907999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice.
    Ankeny DP; Guan Z; Popovich PG
    J Clin Invest; 2009 Oct; 119(10):2990-9. PubMed ID: 19770513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery from spinal cord injury in tumor necrosis factor-alpha, signal transducers and activators of transcription 4 and signal transducers and activators of transcription 6 null mice.
    Fraidakis MJ; Kiyotani T; Pernold K; Bergström J; Olson L
    Neuroreport; 2007 Jan; 18(2):185-9. PubMed ID: 17301687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.