These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 22868633)

  • 1. Adaptive inverse control of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework.
    Li L; Park IM; Brockmeier A; Chen B; Seth S; Francis JT; Sanchez JC; Príncipe JC
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):532-43. PubMed ID: 22868633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reproducing kernel Hilbert space framework for spike train signal processing.
    Paiva AR; Park I; Príncipe JC
    Neural Comput; 2009 Feb; 21(2):424-49. PubMed ID: 19431265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space.
    Li K; Príncipe JC
    Front Neurosci; 2018; 12():194. PubMed ID: 29666568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic optimal control of single neuron spike trains.
    Iolov A; Ditlevsen S; Longtin A
    J Neural Eng; 2014 Aug; 11(4):046004. PubMed ID: 24891497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binless Kernel Machine: Modeling Spike Train Transformation for Cognitive Neural Prostheses.
    Qian C; Sun X; Wang Y; Zheng X; Wang Y; Pan G
    Neural Comput; 2020 Oct; 32(10):1863-1900. PubMed ID: 32795229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional identification of spike-processing neural circuits.
    Lazar AA; Slutskiy YB
    Neural Comput; 2014 Feb; 26(2):264-305. PubMed ID: 24206386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multineuron spike train analysis with R-convolution linear combination kernel.
    Tezuka T
    Neural Netw; 2018 Jun; 102():67-77. PubMed ID: 29544140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions.
    Xu S; Li Y; Guo Q; Yang XF; Chan RHM
    J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A K-Medoids based Point-Process Modeling on Neural Spike Transformation using Binless Kernel.
    Qian C; Sun X; Yang Z; Pan G; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4387-4390. PubMed ID: 31946839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tensor-product-kernel framework for multiscale neural activity decoding and control.
    Li L; Brockmeier AJ; Choi JS; Francis JT; Sanchez JC; Príncipe JC
    Comput Intell Neurosci; 2014; 2014():870160. PubMed ID: 24829569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding stimuli from multi-source neural responses.
    Li L; Choi JS; Francis JT; Sanchez JC; Príncipe JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1331-4. PubMed ID: 23366144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the maximization of information flow between spiking neurons.
    Parra LC; Beck JM; Bell AJ
    Neural Comput; 2009 Nov; 21(11):2991-3009. PubMed ID: 19635018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An artificial chaotic spiking neuron inspired by spiral ganglion cell: paralleled spike encoding, theoretical analysis, and electronic circuit implementation.
    Torikai H; Nishigami T
    Neural Netw; 2009; 22(5-6):664-73. PubMed ID: 19595567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiking neural networks for cortical neuronal spike train decoding.
    Fang H; Wang Y; He J
    Neural Comput; 2010 Apr; 22(4):1060-85. PubMed ID: 19922291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-timing-dependent construction.
    Lightheart T; Grainger S; Lu TF
    Neural Comput; 2013 Oct; 25(10):2611-45. PubMed ID: 23895051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering Neural Patterns in Kernel Reinforcement Learning Assists Fast Brain Control in Brain-Machine Interfaces.
    Zhang X; Libedinsky C; So R; Principe JC; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1684-1694. PubMed ID: 31403433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural decoding with kernel-based metric learning.
    Brockmeier AJ; Choi JS; Kriminger EG; Francis JT; Principe JC
    Neural Comput; 2014 Jun; 26(6):1080-107. PubMed ID: 24684447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.