These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22868792)

  • 21. Mitochondria, oxidative stress, and antioxidant defences.
    Lenaz G; Bovina C; Formiggini G; Parenti Castelli G
    Acta Biochim Pol; 1999; 46(1):1-21. PubMed ID: 10453977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Implications of oxidative stress in senescence].
    Haulică I; Boişteanu P; Iliescu R
    Rev Med Chir Soc Med Nat Iasi; 2000; 104(2):15-9. PubMed ID: 12089981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer's disease.
    Reddy PH
    J Neurochem; 2006 Jan; 96(1):1-13. PubMed ID: 16305625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Free radicals and antioxidants: human physiology, pathology and therapeutic aspects].
    Sahnoun Z; Jamoussi K; Zeghal KM
    Therapie; 1997; 52(4):251-70. PubMed ID: 9437876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial free radical production and cell signaling.
    Cadenas E
    Mol Aspects Med; 2004; 25(1-2):17-26. PubMed ID: 15051313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial theory of aging matures--roles of mtDNA mutation and oxidative stress in human aging.
    Wei YH; Ma YS; Lee HC; Lee CF; Lu CY
    Zhonghua Yi Xue Za Zhi (Taipei); 2001 May; 64(5):259-70. PubMed ID: 11499335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repression of the mitochondrial peroxiredoxin antioxidant system does not shorten life span but causes reduced fitness in Caenorhabditis elegans.
    Ranjan M; Gruber J; Ng LF; Halliwell B
    Free Radic Biol Med; 2013 Oct; 63():381-9. PubMed ID: 23722165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trends in oxidative aging theories.
    Muller FL; Lustgarten MS; Jang Y; Richardson A; Van Remmen H
    Free Radic Biol Med; 2007 Aug; 43(4):477-503. PubMed ID: 17640558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The "rejuvenatory" impact of lipoic acid on mitochondrial function in aging rats may reflect induction and activation of PPAR-gamma coactivator-1alpha.
    McCarty MF; Barroso-Aranda J; Contreras F
    Med Hypotheses; 2009 Jan; 72(1):29-33. PubMed ID: 18789599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exercise training as a drug to treat age associated frailty.
    Viña J; Salvador-Pascual A; Tarazona-Santabalbina FJ; Rodriguez-Mañas L; Gomez-Cabrera MC
    Free Radic Biol Med; 2016 Sep; 98():159-164. PubMed ID: 27021963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.
    Caro P; Gomez J; Sanchez I; Naudi A; Ayala V; López-Torres M; Pamplona R; Barja G
    Rejuvenation Res; 2009 Dec; 12(6):421-34. PubMed ID: 20041736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mitochondrial theory of aging.
    Kowald A
    Biol Signals Recept; 2001; 10(3-4):162-75. PubMed ID: 11351126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is the mitochondrial free radical theory of aging intact?
    Sanz A; Pamplona R; Barja G
    Antioxid Redox Signal; 2006; 8(3-4):582-99. PubMed ID: 16677102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free radical theory of aging.
    Biesalski HK
    Curr Opin Clin Nutr Metab Care; 2002 Jan; 5(1):5-10. PubMed ID: 11790942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2-Hydroxyethyl methacrylate-induced apoptosis through the ATM- and p53-dependent intrinsic mitochondrial pathway.
    Schweikl H; Petzel C; Bolay C; Hiller KA; Buchalla W; Krifka S
    Biomaterials; 2014 Mar; 35(9):2890-904. PubMed ID: 24411679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system.
    Reiter RJ; Acuña-Castroviejo D; Tan DX; Burkhardt S
    Ann N Y Acad Sci; 2001 Jun; 939():200-15. PubMed ID: 11462772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.
    Martin C; Dubouchaud H; Mosoni L; Chardigny JM; Oudot A; Fontaine E; Vergely C; Keriel C; Rochette L; Leverve X; Demaison L
    Aging Cell; 2007 Apr; 6(2):165-77. PubMed ID: 17286611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free radicals and aging.
    Barja G
    Trends Neurosci; 2004 Oct; 27(10):595-600. PubMed ID: 15374670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The aging brain, metals and oxygen free radicals.
    Samson FE; Nelson SR
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):699-707. PubMed ID: 10875433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts.
    Barja G
    Antioxid Redox Signal; 2013 Oct; 19(12):1420-45. PubMed ID: 23642158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.