These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 22868898)
1. In vitro reproduction of endochondral ossification using a 3D mesenchymal stem cell construct. Sasaki J; Matsumoto T; Egusa H; Matsusaki M; Nishiguchi A; Nakano T; Akashi M; Imazato S; Yatani H Integr Biol (Camb); 2012 Oct; 4(10):1207-14. PubMed ID: 22868898 [TBL] [Abstract][Full Text] [Related]
2. An in vitro bone tissue regeneration strategy combining chondrogenic and vascular priming enhances the mineralization potential of mesenchymal stem cells in vitro while also allowing for vessel formation. Freeman FE; Haugh MG; McNamara LM Tissue Eng Part A; 2015 Apr; 21(7-8):1320-32. PubMed ID: 25588588 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the optimal timing for chondrogenic priming of MSCs to enhance osteogenic differentiation in vitro as a bone tissue engineering strategy. Freeman FE; Haugh MG; McNamara LM J Tissue Eng Regen Med; 2016 Apr; 10(4):E250-62. PubMed ID: 23922276 [TBL] [Abstract][Full Text] [Related]
4. Engineering osteochondral constructs through spatial regulation of endochondral ossification. Sheehy EJ; Vinardell T; Buckley CT; Kelly DJ Acta Biomater; 2013 Mar; 9(3):5484-92. PubMed ID: 23159563 [TBL] [Abstract][Full Text] [Related]
5. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells. Zhou N; Hu N; Liao JY; Lin LB; Zhao C; Si WK; Yang Z; Yi SX; Fan TX; Bao W; Liang X; Wei X; Chen H; Chen C; Chen Q; Lin X; Huang W Cell Physiol Biochem; 2015; 36(1):44-60. PubMed ID: 25924688 [TBL] [Abstract][Full Text] [Related]
6. Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels. Sheehy EJ; Mesallati T; Vinardell T; Kelly DJ Acta Biomater; 2015 Feb; 13():245-53. PubMed ID: 25463500 [TBL] [Abstract][Full Text] [Related]
7. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation. Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F Acta Biomater; 2015 Feb; 13():254-65. PubMed ID: 25463490 [TBL] [Abstract][Full Text] [Related]
9. Effects of in vitro endochondral priming and pre-vascularisation of human MSC cellular aggregates in vivo. Freeman FE; Allen AB; Stevens HY; Guldberg RE; McNamara LM Stem Cell Res Ther; 2015 Nov; 6():218. PubMed ID: 26541817 [TBL] [Abstract][Full Text] [Related]
10. Basement membrane extract potentiates the endochondral ossification phenotype of bone marrow-derived mesenchymal stem cell-based cartilage organoids. Notoh H; Yamasaki S; Suzuki N; Suzuki A; Okamoto S; Kanematsu T; Suzuki N; Katsumi A; Kojima T; Matsushita T; Tamura S Biochem Biophys Res Commun; 2024 Mar; 701():149583. PubMed ID: 38330731 [TBL] [Abstract][Full Text] [Related]
11. Pulsed electromagnetic field may accelerate in vitro endochondral ossification. Wang J; Tang N; Xiao Q; Zhang L; Li Y; Li J; Wang J; Zhao Z; Tan L Bioelectromagnetics; 2015 Jan; 36(1):35-44. PubMed ID: 25358461 [TBL] [Abstract][Full Text] [Related]
12. Engineering Small-Scale and Scaffold-Based Bone Organs via Endochondral Ossification Using Adult Progenitor Cells. Scotti C; Tonnarelli B; Papadimitropoulos A; Piccinini E; Todorov A; Centola M; Barbero A; Martin I Methods Mol Biol; 2016; 1416():413-24. PubMed ID: 27236686 [TBL] [Abstract][Full Text] [Related]
13. Dynamic 3D culture: models of chondrogenesis and endochondral ossification. Foster NC; Henstock JR; Reinwald Y; El Haj AJ Birth Defects Res C Embryo Today; 2015 Mar; 105(1):19-33. PubMed ID: 25777047 [TBL] [Abstract][Full Text] [Related]
14. Detailed examination of cartilage formation and endochondral ossification using human mesenchymal stem cells. Ichinose S; Yamagata K; Sekiya I; Muneta T; Tagami M Clin Exp Pharmacol Physiol; 2005 Jul; 32(7):561-70. PubMed ID: 16026516 [TBL] [Abstract][Full Text] [Related]
15. Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Harada N; Watanabe Y; Sato K; Abe S; Yamanaka K; Sakai Y; Kaneko T; Matsushita T Biomaterials; 2014 Sep; 35(27):7800-10. PubMed ID: 24952976 [TBL] [Abstract][Full Text] [Related]
16. 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Daly AC; Pitacco P; Nulty J; Cunniffe GM; Kelly DJ Biomaterials; 2018 Apr; 162():34-46. PubMed ID: 29432987 [TBL] [Abstract][Full Text] [Related]
17. Controlled Release of Vanadium from a Composite Scaffold Stimulates Mesenchymal Stem Cell Osteochondrogenesis. Schussler SD; Uske K; Marwah P; Kemp FW; Bogden JD; Lin SS; Livingston Arinzeh T AAPS J; 2017 Jul; 19(4):1017-1028. PubMed ID: 28332167 [TBL] [Abstract][Full Text] [Related]
18. The Potential Application of Pulsed Ultrasound on Bone Defect Repair via Developmental Engineering: An In Vitro Study. Wang J; Tang N; Xiao Q; Zhao L; Li Y; Li J; Wang J; Zhao Z; Tan L Artif Organs; 2016 May; 40(5):505-13. PubMed ID: 26526417 [TBL] [Abstract][Full Text] [Related]
19. Differential effect of BMP4 on NIH/3T3 and C2C12 cells: implications for endochondral bone formation. Li G; Peng H; Corsi K; Usas A; Olshanski A; Huard J J Bone Miner Res; 2005 Sep; 20(9):1611-23. PubMed ID: 16059633 [TBL] [Abstract][Full Text] [Related]
20. A Cartilaginous Construct with Bone Collar Exerts Bone-Regenerative Property Via Rapid Endochondral Ossification. Morimoto S; Kajiya M; Yoshii H; Yoshino M; Horikoshi S; Motoike S; Iwata T; Ouhara K; Ando T; Yoshimoto T; Shintani T; Mizuno N Stem Cell Rev Rep; 2023 Aug; 19(6):1812-1827. PubMed ID: 37166558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]