BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22870022)

  • 1. A potential role of crystallin in the vitreous bodies of rats after ischemia-reperfusion injury.
    Hong SM; Yang YS
    Korean J Ophthalmol; 2012 Aug; 26(4):248-54. PubMed ID: 22870022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-translational modification of crystallins in vitreous body from experimental autoimmune uveitis of rats.
    Bahk SC; Jang JU; Choi CU; Lee SH; Park ZY; Yang JY; Kim JD; Yang YS; Chung HT
    J Proteome Res; 2007 Oct; 6(10):3891-8. PubMed ID: 17803294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens.
    Wang L; Liu D; Liu P; Yu Y
    Mol Vis; 2011; 17():3423-36. PubMed ID: 22219638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression.
    Posner M; Hawke M; Lacava C; Prince CJ; Bellanco NR; Corbin RW
    Mol Vis; 2008 Apr; 14():806-14. PubMed ID: 18449354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract.
    Robertson LJ; David LL; Riviere MA; Wilmarth PA; Muir MS; Morton JD
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1016-22. PubMed ID: 18326725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract.
    Chen Y; Yi L; Yan G; Fang Y; Jang Y; Wu X; Zhou X; Wei L
    Curr Eye Res; 2010 Jul; 35(7):620-30. PubMed ID: 20597648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats.
    Kopylova LV; Cherepanov IV; Snytnikova OA; Rumyantseva YV; Kolosova NG; Tsentalovich YP; Sagdeev RZ
    Mol Vis; 2011; 17():1457-67. PubMed ID: 21677790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of crystallin family proteins in vitreous body in rat endotoxin-induced uveitis: Involvement of crystallin truncation in uveitis pathogenesis.
    Bahk SC; Lee SH; Jang JU; Choi CU; Lee BS; Chae SC; Song HJ; Park ZY; Yang YS; Chung HT
    Proteomics; 2006 Jun; 6(11):3436-44. PubMed ID: 16622839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death.
    Christopher KL; Pedler MG; Shieh B; Ammar DA; Petrash JM; Mueller NH
    Biochim Biophys Acta; 2014 Feb; 1843(2):309-15. PubMed ID: 24275510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible involvement of alpha B-crystallin in the cardioprotective effect of n-butanol extract of Potentilla anserina L. on myocardial ischemia/reperfusion injury in rat.
    Zhang L; Jian LL; Li JY; Jin X; Li LZ; Zhang YL; Gong HY; Cui Y
    Phytomedicine; 2019 Mar; 55():320-329. PubMed ID: 30940361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells.
    Wang X; Garcia CM; Shui YB; Beebe DC
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3608-19. PubMed ID: 15452068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of covalent multimers of crystallins in aging human lenses.
    Srivastava OP; Kirk MC; Srivastava K
    J Biol Chem; 2004 Mar; 279(12):10901-9. PubMed ID: 14623886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataracts.
    Li W; Calvin HI; David LL; Wu K; McCormack AL; Zhu GP; Fu SC
    Exp Eye Res; 2002 Sep; 75(3):335-46. PubMed ID: 12384096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Dec; 9():644-56. PubMed ID: 14685148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cataract-specific posttranslational modifications and changes in the composition of urea-soluble protein fraction from the rat lens.
    Yanshole LV; Cherepanov IV; Snytnikova OA; Yanshole VV; Sagdeev RZ; Tsentalovich YP
    Mol Vis; 2013; 19():2196-208. PubMed ID: 24227915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins.
    Tiwary E; Hegde S; Purushotham S; Deivanayagam C; Srivastava O
    PLoS One; 2015; 10(12):e0144621. PubMed ID: 26657544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in zebrafish (Danio rerio) lens crystallin content during development.
    Wages P; Horwitz J; Ding L; Corbin RW; Posner M
    Mol Vis; 2013; 19():408-17. PubMed ID: 23441112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of crystallin modifications in the human lens cortex and nucleus using laser capture microdissection and CyDye labeling.
    Asomugha CO; Gupta R; Srivastava OP
    Mol Vis; 2010 Mar; 16():476-94. PubMed ID: 20352024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced C-terminal truncation of alphaA- and alphaB-crystallins in diabetic lenses.
    Thampi P; Hassan A; Smith JB; Abraham EC
    Invest Ophthalmol Vis Sci; 2002 Oct; 43(10):3265-72. PubMed ID: 12356833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.