These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22870506)

  • 1. Computational enzymatic catalysis--clarifying enzymatic mechanisms with the help of computers.
    Sousa SF; Fernandes PA; Ramos MJ
    Phys Chem Chem Phys; 2012 Sep; 14(36):12431-41. PubMed ID: 22870506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational enzymatic catalysis.
    Ramos MJ; Fernandes PA
    Acc Chem Res; 2008 Jun; 41(6):689-98. PubMed ID: 18465885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for Computational Enzymatic Reactivity Based on Geometry Optimisation.
    Cerqueira NMFSA; Fernandes PA; Ramos MJ
    Chemphyschem; 2018 Mar; 19(6):669-689. PubMed ID: 29044952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM/MM methods for biomolecular systems.
    Senn HM; Thiel W
    Angew Chem Int Ed Engl; 2009; 48(7):1198-229. PubMed ID: 19173328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing protein environment in an enzymatic process: All-electron quantum chemical analysis combined with ab initio quantum mechanical/molecular mechanical modeling of chorismate mutase.
    Ishida T
    J Chem Phys; 2008 Sep; 129(12):125105. PubMed ID: 19045066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme molecular mechanism as a starting point to design new inhibitors: a theoretical study of O-GlcNAcase.
    Lameira J; Alves CN; Tuñón I; Martí S; Moliner V
    J Phys Chem B; 2011 May; 115(20):6764-75. PubMed ID: 21542586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic characterization and molecular modeling of an evolutionarily interesting fungal β-N-acetylhexosaminidase.
    Ryšlavá H; Kalendová A; Doubnerová V; Skočdopol P; Kumar V; Kukačka Z; Pompach P; Vaněk O; Slámová K; Bojarová P; Kulik N; Ettrich R; Křen V; Bezouška K
    FEBS J; 2011 Jul; 278(14):2469-84. PubMed ID: 21564548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.
    Tvaroška I
    Carbohydr Res; 2015 Feb; 403():38-47. PubMed ID: 25060837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanical/molecular mechanical molecular dynamics simulation of wild-type and seven mutants of CpNagJ in complex with PUGNAc.
    Lameira J; Alves CN; Moliner V; Martí S; Castillo R; Tuñón I
    J Phys Chem B; 2010 May; 114(20):7029-36. PubMed ID: 20429600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the dimeric N-glycosylated form of fungal beta-N-acetylhexosaminidase revealed by computer modeling, vibrational spectroscopy, and biochemical studies.
    Ettrich R; Kopecký V; Hofbauerová K; Baumruk V; Novák P; Pompach P; Man P; Plíhal O; Kutý M; Kulik N; Sklenár J; Ryslavá H; Kren V; Bezouska K
    BMC Struct Biol; 2007 May; 7():32. PubMed ID: 17509134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first branching point in porphyrin biosynthesis: a systematic docking, molecular dynamics and quantum mechanical/molecular mechanical study of substrate binding and mechanism of uroporphyrinogen-III decarboxylase.
    Bushnell EA; Erdtman E; Llano J; Eriksson LA; Gauld JW
    J Comput Chem; 2011 Apr; 32(5):822-34. PubMed ID: 20941734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of substrate dynamics in protein prenylation reactions.
    Chakravorty DK; Merz KM
    Acc Chem Res; 2015 Feb; 48(2):439-48. PubMed ID: 25539152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-scale computational enzymology: enhancing our understanding of enzymatic catalysis.
    Gherib R; Dokainish HM; Gauld JW
    Int J Mol Sci; 2013 Dec; 15(1):401-22. PubMed ID: 24384841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations on the critical states of the farnesyltransferase enzyme.
    Sousa SF; Fernandes PA; Ramos MJ
    Bioorg Med Chem; 2009 May; 17(9):3369-78. PubMed ID: 19369081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of QM/DMD as a Multiscale Approach to Modeling Metalloenzymes.
    Gallup NM; Alexandrova AN
    Methods Enzymol; 2016; 577():319-39. PubMed ID: 27498643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational enzymology.
    Lonsdale R; Ranaghan KE; Mulholland AJ
    Chem Commun (Camb); 2010 Apr; 46(14):2354-72. PubMed ID: 20309456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin.
    Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD
    J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein dynamics and enzyme catalysis: insights from simulations.
    McGeagh JD; Ranaghan KE; Mulholland AJ
    Biochim Biophys Acta; 2011 Aug; 1814(8):1077-92. PubMed ID: 21167324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The increasing role of QM/MM in drug discovery.
    Lodola A; De Vivo M
    Adv Protein Chem Struct Biol; 2012; 87():337-62. PubMed ID: 22607760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.