These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 22870891)
1. Brain leukocyte infiltration initiated by peripheral inflammation or experimental autoimmune encephalomyelitis occurs through pathways connected to the CSF-filled compartments of the forebrain and midbrain. Schmitt C; Strazielle N; Ghersi-Egea JF J Neuroinflammation; 2012 Aug; 9():187. PubMed ID: 22870891 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal resolution of spinal meningeal and parenchymal inflammation during experimental autoimmune encephalomyelitis. Shrestha B; Jiang X; Ge S; Paul D; Chianchiano P; Pachter JS Neurobiol Dis; 2017 Dec; 108():159-172. PubMed ID: 28844788 [TBL] [Abstract][Full Text] [Related]
3. Actin-Binding Protein Cortactin Promotes Pathogenesis of Experimental Autoimmune Encephalomyelitis by Supporting Leukocyte Infiltration into the Central Nervous System. Samus M; Li YT; Sorokin L; Rottner K; Vestweber D J Neurosci; 2020 Feb; 40(7):1389-1404. PubMed ID: 31911458 [TBL] [Abstract][Full Text] [Related]
4. Differential aspects of immune cell infiltration and neurodegeneration in acute and relapse experimental autoimmune encephalomyelitis. Soellner IA; Rabe J; Mauri V; Kaufmann J; Addicks K; Kuerten S Clin Immunol; 2013 Dec; 149(3):519-29. PubMed ID: 24239839 [TBL] [Abstract][Full Text] [Related]
5. Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions. Hatterer E; Touret M; Belin MF; Honnorat J; Nataf S PLoS One; 2008 Oct; 3(10):e3321. PubMed ID: 18830405 [TBL] [Abstract][Full Text] [Related]
6. Neuroinflammation and B-Cell Phenotypes in Cervical and Lumbosacral Regions of the Spinal Cord in Experimental Autoimmune Encephalomyelitis in the Absence of Pertussis Toxin. Kummari E; Nichols JM; Yang EJ; Kaplan BLF Neuroimmunomodulation; 2019; 26(4):198-207. PubMed ID: 31454809 [TBL] [Abstract][Full Text] [Related]
7. IFN-gamma signaling in the central nervous system controls the course of experimental autoimmune encephalomyelitis independently of the localization and composition of inflammatory foci. Lee E; Chanamara S; Pleasure D; Soulika AM J Neuroinflammation; 2012 Jan; 9():7. PubMed ID: 22248039 [TBL] [Abstract][Full Text] [Related]
8. Syndecan-1, a cell surface proteoglycan, negatively regulates initial leukocyte recruitment to the brain across the choroid plexus in murine experimental autoimmune encephalomyelitis. Zhang X; Wu C; Song J; Götte M; Sorokin L J Immunol; 2013 Nov; 191(9):4551-61. PubMed ID: 24078687 [TBL] [Abstract][Full Text] [Related]
9. Kinin B2 receptor regulates chemokines CCL2 and CCL5 expression and modulates leukocyte recruitment and pathology in experimental autoimmune encephalomyelitis (EAE) in mice. Dos Santos AC; Roffê E; Arantes RM; Juliano L; Pesquero JL; Pesquero JB; Bader M; Teixeira MM; Carvalho-Tavares J J Neuroinflammation; 2008 Nov; 5():49. PubMed ID: 18986535 [TBL] [Abstract][Full Text] [Related]
10. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. Brown DA; Sawchenko PE J Comp Neurol; 2007 May; 502(2):236-60. PubMed ID: 17348011 [TBL] [Abstract][Full Text] [Related]
11. Rescue from acute neuroinflammation by pharmacological chemokine-mediated deviation of leukocytes. Berghmans N; Heremans H; Li S; Martens E; Matthys P; Sorokin L; Van Damme J; Opdenakker G J Neuroinflammation; 2012 Oct; 9():243. PubMed ID: 23095573 [TBL] [Abstract][Full Text] [Related]
12. Experimental autoimmune encephalomyelitis: the antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Berger T; Weerth S; Kojima K; Linington C; Wekerle H; Lassmann H Lab Invest; 1997 Mar; 76(3):355-64. PubMed ID: 9121118 [TBL] [Abstract][Full Text] [Related]
13. The immunopathology of experimental allergic encephalomyelitis. II. Endothelial cell Ia increases prior to inflammatory cell infiltration. Sobel RA; Blanchette BW; Bhan AK; Colvin RB J Immunol; 1984 May; 132(5):2402-7. PubMed ID: 6425402 [TBL] [Abstract][Full Text] [Related]
14. The distribution of inflammatory demyelinated lesions in the central nervous system of rats with antibody-augmented demyelinating experimental allergic encephalomyelitis. Meeson AP; Piddlesden S; Morgan BP; Reynolds R Exp Neurol; 1994 Oct; 129(2):299-310. PubMed ID: 7525334 [TBL] [Abstract][Full Text] [Related]
15. Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund's adjuvant. Lorentzen JC; Issazadeh S; Storch M; Mustafa MI; Lassman H; Linington C; Klareskog L; Olsson T J Neuroimmunol; 1995 Dec; 63(2):193-205. PubMed ID: 8550817 [TBL] [Abstract][Full Text] [Related]
18. Preferential distribution of V beta 8.2-positive T cells in the central nervous system of rats with myelin basic protein-induced autoimmune encephalomyelitis. Tsuchida M; Matsumoto Y; Hirahara H; Hanawa H; Tomiyama K; Abo T Eur J Immunol; 1993 Oct; 23(10):2399-406. PubMed ID: 7691605 [TBL] [Abstract][Full Text] [Related]
20. Single-cell profiling indicates a high similarity between immune cells in the cerebrospinal fluid and in meningeal ectopic lymphoid tissue in experimental autoimmune encephalomyelitis. Georgieva T; Diddens J; Friedrich V; Lepennetier G; Brand RM; Lehmann-Horn K Front Immunol; 2024; 15():1400641. PubMed ID: 38933267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]