These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22871014)

  • 1. Relative efficiency of multi-transect, non-pumped, reactive well networks for removing contaminated groundwater.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(13):2159-62. PubMed ID: 22871014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of reactive well networks for remediating heterogeneous aquifers.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):731-7. PubMed ID: 18444075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of aquifer heterogeneity on non-pumped, reactive well networks for removing pollutants in groundwater.
    Hudak PF
    Bull Environ Contam Toxicol; 2012 Jun; 88(6):997-1000. PubMed ID: 22446968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shallow, non-pumped wells: a low-energy alternative for cleaning polluted groundwater.
    Hudak PF
    Bull Environ Contam Toxicol; 2013 Jul; 91(1):107-10. PubMed ID: 23609453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediating Contaminant Plumes in Groundwater with Shallow Excavations Containing Coarse Reactive Media.
    Hudak PF
    Environ Manage; 2018 Feb; 61(2):304-309. PubMed ID: 29282532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of permeable reactive barrier, funnel and gate, nonpumped wells, and low-capacity wells for groundwater remediation.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(10):1171-5. PubMed ID: 24844898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system.
    Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D
    J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass transport in groundwater near hanging-wall interceptors.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):317-21. PubMed ID: 17365297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced distribution of humic acid-modified nanoscale magnesia for in situ reactive zone removal of Cd from simulated groundwater.
    Koju NK; Song X; Lin N; Xu K; Fu H
    Environ Pollut; 2019 Feb; 245():9-19. PubMed ID: 30408764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Funnel-and-gate remediation systems augmented with passive filter wells.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Sep; 45(11):1441-5. PubMed ID: 20694882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon.
    Bortone I; Di Nardo A; Di Natale M; Erto A; Musmarra D; Santonastaso GF
    J Hazard Mater; 2013 Sep; 260():914-20. PubMed ID: 23876256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting natural attenuation of xylene in groundwater using a numerical model.
    Schäfer W
    J Contam Hydrol; 2001 Nov; 52(1-4):57-83. PubMed ID: 11695746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of strategies for performance monitoring of groundwater contamination at sites underlain by fractured bedrock.
    Chen Y; Smith L; Beckie R
    J Contam Hydrol; 2012 Jun; 134-135():37-53. PubMed ID: 22579666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsed pumping process optimization using a potential flow model.
    Tenney CM; Lastoskie CM
    J Contam Hydrol; 2007 Aug; 93(1-4):111-21. PubMed ID: 17350717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional numerical model for linking community-wide vapour risks.
    Mustafa N; Mumford KG; Gerhard JI; O'Carroll DM
    J Contam Hydrol; 2014 Jan; 156():38-51. PubMed ID: 24246665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation.
    Zuurbier KG; Hartog N; Valstar J; Post VE; van Breukelen BM
    J Contam Hydrol; 2013 Apr; 147():1-13. PubMed ID: 23435174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.
    Johnston CD; Davis GB; Bastow TP; Woodbury RJ; Rao PS; Annable MD; Rhodes S
    J Contam Hydrol; 2014 Aug; 164():100-13. PubMed ID: 24973505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the Potential Impact of Seasonal and Inactive Multi-Aquifer Wells on Contaminant Movement to Public Water-Supply Wells.
    Johnson R; Clark B; Landon M; Kauffman L; Eberts S
    J Am Water Resour Assoc; 2011 Jun; 47(3):588-596. PubMed ID: 22457571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.