BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22871052)

  • 1. Handedness enantioselection of carbon nanotubes using helical assemblies of flavin mononucleotide.
    Ju SY; Abanulo DC; Badalucco CA; Gascón JA; Papadimitrakopoulos F
    J Am Chem Soc; 2012 Aug; 134(32):13196-9. PubMed ID: 22871052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotopically induced variation in the stability of FMN-wrapped carbon nanotubes.
    Sharifi R; Abanulo DC; Papadimitrakopoulos F
    Langmuir; 2013 Jun; 29(24):7209-15. PubMed ID: 23402431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide.
    Ju SY; Doll J; Sharma I; Papadimitrakopoulos F
    Nat Nanotechnol; 2008 Jun; 3(6):356-62. PubMed ID: 18654547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and redox behavior of flavin mononucleotide-functionalized single-walled carbon nanotubes.
    Ju SY; Papadimitrakopoulos F
    J Am Chem Soc; 2008 Jan; 130(2):655-64. PubMed ID: 18081284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Enantiomeric Purity of Single-Wall Carbon Nanotubes Using Flavin Mononucleotide.
    Wei X; Tanaka T; Hirakawa T; Yomogida Y; Kataura H
    J Am Chem Soc; 2017 Nov; 139(45):16068-16071. PubMed ID: 29069542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helical Assembly of Flavin Mononucleotides on Carbon Nanotubes as Multimodal Near-IR Hg(II)-Selective Probes.
    Park M; Hong KI; Jin SM; Lee E; Jang WD; Ju SY
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8400-8411. PubMed ID: 30724070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of aqueous carbon nanotube dispersions using surfactants: insights from molecular dynamics simulations.
    Tummala NR; Morrow BH; Resasco DE; Striolo A
    ACS Nano; 2010 Dec; 4(12):7193-204. PubMed ID: 21128672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum electronic stability in selective enrichment of carbon nanotubes.
    Ogunro OO; Wang XQ
    Nano Lett; 2009 Mar; 9(3):1034-8. PubMed ID: 19236011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-handed helical wrapping of single-walled carbon nanotubes by chiral, ionic, semiconducting polymers.
    Deria P; Von Bargen CD; Olivier JH; Kumbhar AS; Saven JG; Therien MJ
    J Am Chem Soc; 2013 Oct; 135(43):16220-34. PubMed ID: 24070370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the Absolute Enantiomeric Excess of the Carbon Nanotube Ensemble by Symmetry Breaking Using the Optical Titration Method.
    Sim J; Kim S; Jang M; Park M; Oh H; Ju SY
    Langmuir; 2017 Oct; 33(41):11000-11009. PubMed ID: 28926252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone.
    Bradley LH; Swenson RP
    Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular dynamics simulation of the flavin mononucleotide-RNA aptamer complex.
    Schneider C; Sühnel J
    Biopolymers; 1999 Sep; 50(3):287-302. PubMed ID: 10397790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous discrimination of handedness and diameter of single-walled carbon nanotubes (SWNTs) with chiral diporphyrin nanotweezers leading to enrichment of a single enantiomer of (6,5)-SWNTs.
    Wang F; Matsuda K; Rahman AF; Peng X; Kimura T; Komatsu N
    J Am Chem Soc; 2010 Aug; 132(31):10876-81. PubMed ID: 20681721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of the quasi-epitaxial flavin assembly around various-chirality carbon nanotubes.
    Sharifi R; Samaraweera M; Gascón JA; Papadimitrakopoulos F
    J Am Chem Soc; 2014 May; 136(20):7452-63. PubMed ID: 24821307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved selectivity in discriminating handedness and diameter of single-walled carbon nanotubes with N-substituted 3,6-carbazolylene-bridged chiral diporphyrin nanotweezers.
    Wang F; Matsuda K; Rahman AF; Kimura T; Komatsu N
    Nanoscale; 2011 Oct; 3(10):4117-24. PubMed ID: 21677938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study.
    Pradhan SK; Singh NR; Dehury B; Panda D; Modi MK; Thatoi H
    J Cell Biochem; 2019 Oct; 120(10):16990-17005. PubMed ID: 31131470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of flavin mononucleotide in the thermostability and oligomerization of Escherichia coli stress-defense protein WrbA.
    Natalello A; Doglia SM; Carey J; Grandori R
    Biochemistry; 2007 Jan; 46(2):543-53. PubMed ID: 17209564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavin-protein interactions in flavocytochrome b2 as studied by NMR after reconstitution of the enzyme with 13C- and 15N-labelled flavin.
    Fleischmann G; Lederer F; Müller F; Bacher A; Rüterjans H
    Eur J Biochem; 2000 Aug; 267(16):5156-67. PubMed ID: 10931200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray crystal structure of the Desulfovibrio vulgaris (Hildenborough) apoflavodoxin-riboflavin complex.
    Walsh MA; McCarthy A; O'Farrell PA; McArdle P; Cunningham PD; Mayhew SG; Higgins TM
    Eur J Biochem; 1998 Dec; 258(2):362-71. PubMed ID: 9874201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 2. Evidence for cooperative conformational changes involving tryptophan 60 in the interaction between the phosphate- and ring-binding subsites.
    Murray TA; Foster MP; Swenson RP
    Biochemistry; 2003 Mar; 42(8):2317-27. PubMed ID: 12600199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.