BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 22871609)

  • 1. Microtubules underlie dysfunction in duchenne muscular dystrophy.
    Khairallah RJ; Shi G; Sbrana F; Prosser BL; Borroto C; Mazaitis MJ; Hoffman EP; Mahurkar A; Sachs F; Sun Y; Chen YW; Raiteri R; Lederer WJ; Dorsey SG; Ward CW
    Sci Signal; 2012 Aug; 5(236):ra56. PubMed ID: 22871609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eliminating Nox2 reactive oxygen species production protects dystrophic skeletal muscle from pathological calcium influx assessed in vivo by manganese-enhanced magnetic resonance imaging.
    Loehr JA; Stinnett GR; Hernández-Rivera M; Roten WT; Wilson LJ; Pautler RG; Rodney GG
    J Physiol; 2016 Nov; 594(21):6395-6405. PubMed ID: 27555555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthine oxidase is hyper-active in Duchenne muscular dystrophy.
    Lindsay A; McCourt PM; Karachunski P; Lowe DA; Ervasti JM
    Free Radic Biol Med; 2018 Dec; 129():364-371. PubMed ID: 30312761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.
    Church JE; Trieu J; Chee A; Naim T; Gehrig SM; Lamon S; Angelini C; Russell AP; Lynch GS
    Exp Physiol; 2014 Apr; 99(4):675-87. PubMed ID: 24443351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent upregulation of the β-tubulin tubb6, linked to muscle regeneration, is a source of microtubule disorganization in dystrophic muscle.
    Randazzo D; Khalique U; Belanto JJ; Kenea A; Talsness DM; Olthoff JT; Tran MD; Zaal KJ; Pak K; Pinal-Fernandez I; Mammen AL; Sackett D; Ervasti JM; Ralston E
    Hum Mol Genet; 2019 Apr; 28(7):1117-1135. PubMed ID: 30535187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy.
    Marrocco V; Fiore P; Benedetti A; Pisu S; Rizzuto E; Musarò A; Madaro L; Lozanoska-Ochser B; Bouché M
    EBioMedicine; 2017 Feb; 16():150-161. PubMed ID: 28089792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reciprocal amplification of ROS and Ca(2+) signals in stressed mdx dystrophic skeletal muscle fibers.
    Shkryl VM; Martins AS; Ullrich ND; Nowycky MC; Niggli E; Shirokova N
    Pflugers Arch; 2009 Sep; 458(5):915-28. PubMed ID: 19387681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ROS signaling: rapid mechano-chemo transduction in heart.
    Prosser BL; Ward CW; Lederer WJ
    Science; 2011 Sep; 333(6048):1440-5. PubMed ID: 21903813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells.
    Henríquez-Olguín C; Altamirano F; Valladares D; López JR; Allen PD; Jaimovich E
    Biochim Biophys Acta; 2015 Jul; 1852(7):1410-9. PubMed ID: 25857619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice.
    Whitehead NP; Pham C; Gervasio OL; Allen DG
    J Physiol; 2008 Apr; 586(7):2003-14. PubMed ID: 18258657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRPC1 binds to caveolin-3 and is regulated by Src kinase - role in Duchenne muscular dystrophy.
    Gervásio OL; Whitehead NP; Yeung EW; Phillips WD; Allen DG
    J Cell Sci; 2008 Jul; 121(Pt 13):2246-55. PubMed ID: 18544631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of failing fibers in muscles of dystrophic mice provides mechanistic insight into muscular dystrophy.
    Claflin DR; Brooks SV
    Am J Physiol Cell Physiol; 2008 Feb; 294(2):C651-8. PubMed ID: 18171725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced expression of the alpha 7 beta 1 integrin reduces muscular dystrophy and restores viability in dystrophic mice.
    Burkin DJ; Wallace GQ; Nicol KJ; Kaufman DJ; Kaufman SJ
    J Cell Biol; 2001 Mar; 152(6):1207-18. PubMed ID: 11257121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of reactive oxygen species in the hearts of dystrophin-deficient mdx mice.
    Williams IA; Allen DG
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1969-77. PubMed ID: 17573457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole body periodic acceleration is an effective therapy to ameliorate muscular dystrophy in mdx mice.
    Altamirano F; Perez CF; Liu M; Widrick J; Barton ER; Allen PD; Adams JA; Lopez JR
    PLoS One; 2014; 9(9):e106590. PubMed ID: 25181488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microtubule-connexin-43 regulatory link suppresses arrhythmias and cardiac fibrosis in Duchenne muscular dystrophy mice.
    Himelman E; Nouet J; Lillo MA; Chong A; Zhou D; Wehrens XHT; Rodney GG; Xie LH; Shirokova N; Contreras JE; Fraidenraich D
    Am J Physiol Heart Circ Physiol; 2022 Nov; 323(5):H983-H995. PubMed ID: 36206047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10.
    Nitahara-Kasahara Y; Hayashita-Kinoh H; Chiyo T; Nishiyama A; Okada H; Takeda S; Okada T
    Hum Mol Genet; 2014 Aug; 23(15):3990-4000. PubMed ID: 24659498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid, redox-mediated mechanical susceptibility of the cortical microtubule lattice in skeletal muscle.
    Nelson DM; Fasbender EK; Jakubiak MC; Lindsay A; Lowe DA; Ervasti JM
    Redox Biol; 2020 Oct; 37():101730. PubMed ID: 33002761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice.
    Schertzer JD; van der Poel C; Shavlakadze T; Grounds MD; Lynch GS
    Am J Physiol Cell Physiol; 2008 Jan; 294(1):C161-8. PubMed ID: 17989207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points.
    Capogrosso RF; Mantuano P; Cozzoli A; Sanarica F; Massari AM; Conte E; Fonzino A; Giustino A; Rolland JF; Quaranta A; De Bellis M; Camerino GM; Grange RW; De Luca A
    J Appl Physiol (1985); 2017 Apr; 122(4):828-843. PubMed ID: 28057817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.