These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22871738)

  • 1. The MEN mediates the effects of the spindle assembly checkpoint on Kar9-dependent spindle pole body inheritance in budding yeast.
    Hotz M; Lengefeld J; Barral Y
    Cell Cycle; 2012 Aug; 11(16):3109-16. PubMed ID: 22871738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spindle pole bodies exploit the mitotic exit network in metaphase to drive their age-dependent segregation.
    Hotz M; Leisner C; Chen D; Manatschal C; Wegleiter T; Ouellet J; Lindstrom D; Gottschling DE; Vogel J; Barral Y
    Cell; 2012 Mar; 148(5):958-72. PubMed ID: 22385961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment.
    Liakopoulos D; Kusch J; Grava S; Vogel J; Barral Y
    Cell; 2003 Feb; 112(4):561-74. PubMed ID: 12600318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kar9 asymmetrical loading on spindle poles mediates proper spindle alignment in budding yeast.
    Paoletti A; Bornens M
    Dev Cell; 2003 Mar; 4(3):289-90. PubMed ID: 12636909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the DNA damage checkpoint perturbs asymmetric localization of Kar9 to spindle pole bodies in Saccharomyces cerevisiae.
    Hayashida M; Nomura W; Shiojiri A; Inoue Y
    Biochem Biophys Res Commun; 2023 Dec; 685():149157. PubMed ID: 37918324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of mitotic spindle asymmetry by SUMO and the spindle-assembly checkpoint in yeast.
    Leisner C; Kammerer D; Denoth A; Britschi M; Barral Y; Liakopoulos D
    Curr Biol; 2008 Aug; 18(16):1249-55. PubMed ID: 18722122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex.
    Maekawa H; Schiebel E
    Genes Dev; 2004 Jul; 18(14):1709-24. PubMed ID: 15256500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Budding yeast Wee1 distinguishes spindle pole bodies to guide their pattern of age-dependent segregation.
    Lengefeld J; Hotz M; Rollins M; Baetz K; Barral Y
    Nat Cell Biol; 2017 Aug; 19(8):941-951. PubMed ID: 28714971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1.
    Scarfone I; Piatti S
    Small GTPases; 2015 Oct; 6(4):196-201. PubMed ID: 26507466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gamma-tubulin is required for proper recruitment and assembly of Kar9-Bim1 complexes in budding yeast.
    Cuschieri L; Miller R; Vogel J
    Mol Biol Cell; 2006 Oct; 17(10):4420-34. PubMed ID: 16899509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Astral microtubule pivoting promotes their search for cortical anchor sites during mitosis in budding yeast.
    Baumgärtner S; Tolić IM
    PLoS One; 2014; 9(4):e93781. PubMed ID: 24721997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial cues and not spindle pole maturation drive the asymmetry of astral microtubules between new and preexisting spindle poles.
    Lengefeld J; Yen E; Chen X; Leary A; Vogel J; Barral Y
    Mol Biol Cell; 2018 Jan; 29(1):10-28. PubMed ID: 29142076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spindle pole body history intrinsically links pole identity with asymmetric fate in budding yeast.
    Juanes MA; Twyman H; Tunnacliffe E; Guo Z; ten Hoopen R; Segal M
    Curr Biol; 2013 Jul; 23(14):1310-9. PubMed ID: 23810537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connecting up and clearing out: how kinetochore attachment silences the spindle assembly checkpoint.
    Kops GJ; Shah JV
    Chromosoma; 2012 Oct; 121(5):509-25. PubMed ID: 22782189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reorientation of mispositioned spindles in short astral microtubule mutant spc72Delta is dependent on spindle pole body outer plaque and Kar3 motor protein.
    Hoepfner D; Schaerer F; Brachat A; Wach A; Philippsen P
    Mol Biol Cell; 2002 Apr; 13(4):1366-80. PubMed ID: 11950945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae.
    Maddox P; Chin E; Mallavarapu A; Yeh E; Salmon ED; Bloom K
    J Cell Biol; 1999 Mar; 144(5):977-87. PubMed ID: 10085295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Hyperactive Nud1 Mitotic Exit Network Scaffold Causes Spindle Position Checkpoint Bypass in Budding Yeast.
    Vannini M; Mingione VR; Meyer A; Sniffen C; Whalen J; Seshan A
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mad3/BubR1 phosphorylation during spindle checkpoint activation depends on both Polo and Aurora kinases in budding yeast.
    Rancati G; Crispo V; Lucchini G; Piatti S
    Cell Cycle; 2005 Jul; 4(7):972-80. PubMed ID: 15970700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants.
    Yeh E; Yang C; Chin E; Maddox P; Salmon ED; Lew DJ; Bloom K
    Mol Biol Cell; 2000 Nov; 11(11):3949-61. PubMed ID: 11071919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit.
    Scarfone I; Venturetti M; Hotz M; Lengefeld J; Barral Y; Piatti S
    PLoS Genet; 2015 Feb; 11(2):e1004938. PubMed ID: 25658911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.