BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 22871739)

  • 1. E2F1 confers anticancer drug resistance by targeting ABC transporter family members and Bcl-2 via the p73/DNp73-miR-205 circuitry.
    Alla V; Kowtharapu BS; Engelmann D; Emmrich S; Schmitz U; Steder M; Pützer BM
    Cell Cycle; 2012 Aug; 11(16):3067-78. PubMed ID: 22871739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network.
    Vera J; Schmitz U; Lai X; Engelmann D; Khan FM; Wolkenhauer O; Pützer BM
    Cancer Res; 2013 Jun; 73(12):3511-24. PubMed ID: 23447575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1.
    Ray RM; Bhattacharya S; Johnson LR
    Apoptosis; 2011 Jan; 16(1):35-44. PubMed ID: 20812030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria.
    John K; Alla V; Meier C; Pützer BM
    Cell Death Differ; 2011 May; 18(5):874-86. PubMed ID: 21127500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p73 and IGF1R Regulate Emergence of Aggressive Cancer Stem-like Features via miR-885-5p Control.
    Meier C; Hardtstock P; Joost S; Alla V; Pützer BM
    Cancer Res; 2016 Jan; 76(2):197-205. PubMed ID: 26554827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1.
    Ambrosini G; Sambol EB; Carvajal D; Vassilev LT; Singer S; Schwartz GK
    Oncogene; 2007 May; 26(24):3473-81. PubMed ID: 17146434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of E2F1 in human gastric carcinoma is involved in anti-cancer drug resistance.
    Yan LH; Wei WY; Cao WL; Zhang XS; Xie YB; Xiao Q
    BMC Cancer; 2014 Dec; 14():904. PubMed ID: 25466554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Camptothecin induces p53-dependent and -independent apoptogenic signaling in melanoma cells.
    Rudolf E; Rudolf K; Cervinka M
    Apoptosis; 2011 Nov; 16(11):1165-76. PubMed ID: 21809047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deregulated expression of E2F1 promotes proteolytic degradation of tumor suppressor p73 and inhibits its transcriptional activity.
    Ozaki T; Okoshi R; Ono S; Kubo N; Nakagawara A
    Biochem Biophys Res Commun; 2009 Sep; 387(1):143-8. PubMed ID: 19576172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling.
    Steder M; Alla V; Meier C; Spitschak A; Pahnke J; Fürst K; Kowtharapu BS; Engelmann D; Petigk J; Egberts F; Schäd-Trcka SG; Gross G; Nettelbeck DM; Niemetz A; Pützer BM
    Cancer Cell; 2013 Oct; 24(4):512-27. PubMed ID: 24135282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NEDDylation controls the target specificity of E2F1 and apoptosis induction.
    Aoki I; Higuchi M; Gotoh Y
    Oncogene; 2013 Aug; 32(34):3954-64. PubMed ID: 23001041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of acetylpolyamine oxidase by selected AP-1 members regulates DNp73 abundance: mechanistic insights for overcoming DNp73-mediated resistance to chemotherapeutic drugs.
    Bunjobpol W; Dulloo I; Igarashi K; Concin N; Matsuo K; Sabapathy K
    Cell Death Differ; 2014 Aug; 21(8):1240-9. PubMed ID: 24722210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53 inactivation upregulates p73 expression through E2F-1 mediated transcription.
    Tophkhane C; Yang SH; Jiang Y; Ma Z; Subramaniam D; Anant S; Yogosawa S; Sakai T; Liu WG; Edgerton S; Thor A; Yang X
    PLoS One; 2012; 7(8):e43564. PubMed ID: 22952705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E1A activates transcription of p73 and Noxa to induce apoptosis.
    Flinterman M; Guelen L; Ezzati-Nik S; Killick R; Melino G; Tominaga K; Mymryk JS; Gäken J; Tavassoli M
    J Biol Chem; 2005 Feb; 280(7):5945-59. PubMed ID: 15572378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting p73--a potential approach in cancer treatment.
    Slade N; Horvat A
    Curr Pharm Des; 2011; 17(6):591-602. PubMed ID: 21391909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity.
    Chen D; Ming L; Zou F; Peng Y; Van Houten B; Yu J; Zhang L
    Oncotarget; 2014 Sep; 5(18):8107-22. PubMed ID: 25237903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in transcriptional regulation of cyclin dependent kinase inhibitor p21waf1/cip1 among human bronchogenic carcinomas.
    Harr MW; Graves TG; Crawford EL; Warner KA; Reed CA; Willey JC
    Mol Cancer; 2005 Jul; 4():23. PubMed ID: 16014176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. α-TEA cooperates with chemotherapeutic agents to induce apoptosis of p53 mutant, triple-negative human breast cancer cells via activating p73.
    Tiwary R; Yu W; Sanders BG; Kline K
    Breast Cancer Res; 2011 Jan; 13(1):R1. PubMed ID: 21214929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-361-3p promotes human breast cancer cell viability by inhibiting the E2F1/P73 signalling pathway.
    Hua B; Li Y; Yang X; Niu X; Zhao Y; Zhu X
    Biomed Pharmacother; 2020 May; 125():109994. PubMed ID: 32092817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma.
    Ory B; Ramsey MR; Wilson C; Vadysirisack DD; Forster N; Rocco JW; Rothenberg SM; Ellisen LW
    J Clin Invest; 2011 Feb; 121(2):809-20. PubMed ID: 21293058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.